
CCPP Technical Documentation

J. Schramm, L. Bernardet, L. Carson,
G. Firl, D. Heinzeller, L. Pan, and M. Zhang

Nov 16, 2020

For referencing this document please use:

Schramm, J., L. Bernardet, L. Carson, G. Firl, D. Heinzeller, L. Pan, and M. Zhang, 2020. CCPP Technical
Documentation Release v4.0.0. Available at https://dtcenter.org/GMTB/v4.0/ccpp_tech_guidev4.0.pdf.

CONTENTS

1 CCPP Overview 1
1.1 How to Use this Document . 4

2 CCPP-Compliant Physics Parameterizations 5
2.1 General Rules . 6
2.2 Metadata Table Rules . 7

2.2.1 ccpp-table-properties . 7
2.2.2 ccpp-arg-table . 9

2.3 Input/output Variable (argument) Rules . 11
2.4 Coding Rules . 12
2.5 Parallel Programming Rules . 13
2.6 Scientific Documentation Rules . 13

2.6.1 Doxygen Comments and Commands . 14
2.6.2 Doxygen Documentation Style . 14
2.6.3 Doxygen Configuration . 20
2.6.4 Including metadata information . 21
2.6.5 Using Doxygen . 23

3 CCPP Configuration and Build Options 25

4 Constructing Suites 27
4.1 Suite Definition File . 27

4.1.1 Groups . 27
4.1.2 Subcycling . 28
4.1.3 Order of Schemes . 28

4.2 Interstitial Schemes . 28
4.3 SDF Examples . 28

4.3.1 Simplest Case: Single Group and no Subcycling . 28
4.3.2 Case with Multiple Groups . 29
4.3.3 Case with Subcycling . 30
4.3.4 GFS v16beta Suite . 30

5 Suite and Group Caps 35
5.1 Overview . 35
5.2 Automatic unit conversions . 39

6 Host Side Coding 41
6.1 Variable Requirements on the Host Model Side . 41
6.2 Metadata for Variable in the Host Model . 41

6.2.1 Active Attribute . 44
6.3 CCPP Variables in the SCM and UFS Atmosphere Host Models . 45

i

6.4 CCPP API . 47
6.4.1 Data Structure to Transfer Variables between Dynamics and Physics 47
6.4.2 Initializing and Finalizing the CCPP . 47
6.4.3 Running the Physics . 48
6.4.4 Initializing and Finalizing the Physics . 49

6.5 Host Caps . 49
6.5.1 SCM Host Cap . 51
6.5.2 UFS Atmosphere Host Cap . 52

7 CCPP Code Management 55
7.1 Organization of the Code . 55

7.1.1 Authoritative Repositories . 55
7.1.2 Directory Structure of ccpp/framework . 55
7.1.3 Directory Structure of ccpp/physics . 56

7.2 GitHub Workflow (setting up development repositories) . 56
7.2.1 Creating Forks . 56
7.2.2 Checking out the Code . 56

7.3 Committing Changes to your Fork . 57
7.4 Contributing Code, Code Review Process . 58

7.4.1 Creating a PR . 58

8 Technical Aspects of the CCPP Prebuild 61
8.1 Prebuild Script Function . 61
8.2 Script Configuration . 61
8.3 Running ccpp_prebuild.py . 64
8.4 Troubleshooting . 65

9 Tips for Adding a New Scheme 69

10 Parameterization-specific Output 73
10.1 Overview . 73
10.2 Tendencies . 73

10.2.1 Available Tendencies . 73
10.2.2 Activating Tendencies . 74
10.2.3 Outputting Tendencies . 75
10.2.4 FAQ . 75
10.2.5 Why did I run out of memory when outputting tendencies? 76
10.2.6 Why did I get a runtime logic error when outputting tendencies? 76

10.3 Output of Auxiliary Arrays from CCPP . 76
10.3.1 Enabling the capability . 77
10.3.2 Recompiling and Examples . 78

11 Debugging with CCPP 81
11.1 Introduction . 81
11.2 Two categories of debugging with CCPP . 81
11.3 CCPP-compliant debugging schemes for the UFS . 82

11.3.1 Descriptions of the CCPP-compliant debugging schemes for the UFS 82
11.3.2 How to use these debugging schemes for the UFS . 84
11.3.3 How to customize the debugging schemes and the output for arrays in the UFS 85

12 Acronyms 87

13 Glossary 89

Index 91

ii

CHAPTER

ONE

CCPP OVERVIEW

Ideas for this project originated within the Earth System Prediction Capability (ESPC) physics interoperability group,
which has representatives from the US National Center for Atmospheric Research (NCAR), the Navy, National
Oceanic and Atmospheric Administration (NOAA) Research Laboratories, NOAA National Weather Service, and
other groups. Physics interoperability, or the ability to run a given physics suite in various host models, has been a
goal of this multi-agency group for several years. An initial mechanism to run the physics of NOAA’s Global Forecast
System (GFS) model in other host models was developed by the NOAA Environmental Modeling Center (EMC) and
later augmented by the NOAA Geophysical Fluid Dynamics Laboratory (GFDL). The CCPP expanded on that work
by meeting additional requirements put forth by NOAA, and brought new functionalities to the physics-dynamics in-
terface. Those include the ability to choose the order of parameterizations, to subcycle individual parameterizations by
running them more frequently than other parameterizations, and to group arbitrary sets of parameterizations allowing
other computations in between them (e.g., dynamics and coupling computations).

The architecture of the CCPP and its connection to a host model is shown in Figure 1.1. There are two distinct
parts to the CCPP: a library of physical parameterizations (CCPP-Physics) that conforms to selected standards and an
infrastructure (CCPP-Framework) that enables connecting the physics to a host model.

Fig. 1.1: Architecture of the CCPP and its connection to a host model, represented here as the driver for an atmo-
spheric model (yellow box). The dynamical core (dycore), physics, and other aspects of the model (such as coupling)
are connected to the driving host through the pool of physics caps. The CCPP-Physics is denoted by the gray box at
the bottom of the physics, and encompasses the parameterizations, which are accompanied by physics caps.

The host model needs to have functional documentation for any variable that will be passed to or received from
the physics. The CCPP-Framework is used to compare the variables requested by each physical parameterization

1

https://dtcenter.org/gmtb/users/ccpp/developers/requirements/CCPP_REQUIREMENTS.pdf

CCPP Technical Documentation

against those provided by the host model1, and to check whether they are available, otherwise an error will be issued.
This process serves to expose the variables passed between physics and dynamics, and to clarify how information is
exchanged among parameterizations. During runtime, the CCPP-Framework is responsible for communicating the
necessary variables between the host model and the parameterizations.

The CCPP-Physics contains the parameterizations and suites that are used operationally in the UFS Atmosphere, as
well as parameterizations that are under development for possible transition to operations in the future. The CCPP
aims to support the broad community while benefiting from the community. In such a CCPP ecosystem (Figure 1.2),
the CCPP can be used not only by the operational centers to produce operational forecasts, but also by the research
community to conduct investigation and development. Innovations created and effectively tested by the research
community can be funneled back to the operational centers for further improvement of the operational forecasts.

Both the CCPP-Framework and the CCPP-Physics are developed as open source code, follow industry-standard
code management practices, and are freely distributed through GitHub (https://github.com/NCAR/ccpp-physics and
https://github.com/NCAR/ccpp-framework). This documentation is housed in repository https://github.com/NCAR/
ccpp-doc.

Fig. 1.2: CCPP ecosystem.

The first public release of the CCPP took place in April 2018 and included all the parameterizations of the operational
GFS v14, along with the ability to connect to the SCM. The second public release of the CCPP took place in August

1 As of this writing, the CCPP has been validated with two host models: the CCPP Single Column Model (SCM) and the atmospheric component
of NOAA’s Unified Forecast System (UFS) (hereafter the UFS Atmosphere) that utilizes the Finite-Volume Cubed Sphere (FV3) dycore. The CCPP
can be utilized both with the global and standalone regional configurations of the UFS Atmosphere. The CCPP has also been run experimentally
with a Navy model. Work is under way to connect and validate the use of the CCPP-Framework with NCAR models.

2 Chapter 1. CCPP Overview

https://github.com/NCAR/ccpp-physics
https://github.com/NCAR/ccpp-framework
https://github.com/NCAR/ccpp-doc
https://github.com/NCAR/ccpp-doc

CCPP Technical Documentation

2018 and additionally included the physics suite tested for the implementation of GFS v15. The third public release of
the CCPP, in June 2019, had four suites: GFS_v15, corresponding to the GFS v15 model implemented operationally in
June 2019, and three developmental suites considered for use in GFS v16 (GFS_v15plus with an alternate PBL scheme,
csawmg with alternate convection and microphysics schemes, and GFS_v0 with alternate convection, microphysics,
PBL, and land surface schemes). The CCPP v4 release, issued in March 2020, contains suite GFS_v15p2, which
is an updated version of the operational GFS v15 and replaces suite GFS_v15. It also contains three developmental
suites: csawmg has minor updates, GSD_v1 is an update over the previously released GSD_v0, and GFS_v16beta is
the target suite for implementation in the upcoming operational GFSv16 (it replaces suite GFSv15plus). Additionally,
there are two new suites, GFS_v15p2_no_nsst and GFS_v16beta_no_nsst, which are variants that treat the sea surface
temperature more simply. These variants are recommended for use when the initial conditions do not contain all
fields needed to initialize the more complex Near Sea Surface Temperature (NSST) scheme. The CCPP Scientific
Documentation describes the suites and their parameterizations in detail.

The CCPP is governed by the groups that contribute to its development. The governance of the CCPP-Physics is
currently led by NOAA, and the DTC works with EMC and the Next Generation Global Prediction System (NG-
GPS) Program Office to determine which schemes and suites to be included and supported. The governance of the
CCPP-Framework is jointly undertaken by NOAA and NCAR (see more information at https://github.com/NCAR/
ccpp-framework/wiki and https://dtcenter.org/gmtb/users/ccpp). Please direct all inquiries to gmtb-help@ucar.edu.

Table 1.1: Suites supported in the CCPP
Opera-
tional

Experimental Variants

GFS_v15p2 GFS_v16betacsawmg GSD_v1 GFS_v15p2_no_nsstGFS_v16beta_no_nsst
Microphysics GFDL GFDL M-G3 Thompson GFDL GFDL
PBL K-EDMF TKE

EDMF
K-
EDMF

saMYNN K-EDMF TKE EDMF

Deep convec-
tion

saSAS saSAS CSAW GF saSAS saSAS

Shallow
convection

saSAS saSAS saSAS saMYNN and
saSAS

saSAS saSAS

Radiation RRTMG RRTMG RRTMG RRTMG RRTMG RRTMG
Surface layer GFS GFS GFS GFS GFS GFS
Gravity Wave
Drag

uGWD uGWD uGWD uGWD uGWD uGWD

Land surface Noah Noah Noah RUC Noah Noah
Ozone NRL 2015 NRL 2015 NRL

2015
NRL 2015 NRL 2015 NRL 2015

H2O NRL 2015 NRL 2015 NRL
2015

NRL 2015 NRL 2015 NRL 2015

Ocean NSST NSST NSST NSST sfc_ocean sfc_ocean

The suites that are currently supported in the CCPP are listed in the second row. The types of parameterization are
denoted in the first column, where H2O represents the stratospheric water vapor parameterization. The GFS_v15p2
suite includes the GFDL microphysics, a Eddy-Diffusivity Mass Flux (K-EDMF) planetary boundary layer (PBL)
scheme, scale-aware (sa) Simplified Arakawa-Schubert (SAS) convection, Rapid Radiation Transfer Model for General
Circulation Models (RRTMG) radiation, the GFS surface layer, the unified gravity wave drag (uGWD), the Noah Land
Surface Model (LSM), the 2015 Navy Research Laboratory (NRL) ozone and stratospheric water vapor schemes, and
the NSST ocean scheme. The three developmental suites are candidates for future operational implementations. The
GFS_v16beta suite is the same as the GFS_v15p2 suite except using the Turbulent Kinetic Energy (TKE)-based EDMF
PBL scheme. The Chikira-Sugiyama (csawmg) suite uses the Morrison-Gettelman 3 (M-G3) microphysics scheme
and Chikira-Sugiyama convection scheme with Arakawa-Wu extension (CSAW). The NOAA Global Systems Division
(GSD) v1 suite (GSD_v1) includes Thompson microphysics, scale-aware Mellor-Yamada-Nakanishi-Niino (saMYNN)
PBL and shallow convection, Grell-Freitas (GF) deep convection schemes, and the Rapid Update Cycle (RUC) LSM.

3

https://dtcenter.org/GMTB/v4.0/sci_doc/suite_FV3_GFS_v15p2_xml.html
https://dtcenter.org/GMTB/v4.0/sci_doc/suite_FV3_GFS_v15p2_xml.html
https://github.com/NCAR/ccpp-framework/wiki
https://github.com/NCAR/ccpp-framework/wiki
https://dtcenter.org/gmtb/users/ccpp
mailto:gmtb-help@ucar.edu

CCPP Technical Documentation

The two variants use the sfc_ocean scheme instead of the NSST scheme.

1.1 How to Use this Document

This document contains documentation for the Common Community Physics Package (CCPP). It describes the

• Physics schemes and interstitials

• Suite definition files

• CCPP-compliant parameterizations

• Process to add a new scheme or suite

• Host-side coding

• CCPP code management and governance

For the latest version of the released code, please visit the DTC Website

Please send questions and comments to the help desk: gmtb-help@ucar.edu. When using the CCPP with NOAA’s
Unified Forecast System, questions can also be posted in the UFS Forum at https://forums.ufscommunity.org/.

This table describes the type changes and symbols used in this guide.

Typeface or
Symbol

Meaning Example

AaBbCc123 The names of commands, files, and directo-
ries; on-screen computer output

Edit your .bashrc Use ls -a to list all files.
host$ You have mail!

Following these typefaces and conventions, shell commands, code examples, namelist variables, etc. will be presented
in this style:

mkdir ${TOP_DIR}

4 Chapter 1. CCPP Overview

http://www.dtcenter.org/gmtb/users/ccpp
mailto:gmtb-help@ucar.edu
https://forums.ufscommunity.org/

CHAPTER

TWO

CCPP-COMPLIANT PHYSICS PARAMETERIZATIONS

The rules for a scheme to be considered CCPP-compliant are summarized in this section. It should be noted that
making a scheme CCPP-compliant is a necessary but not guaranteed step for the acceptance of the scheme in the pool
of supported CCPP-Physics. Acceptance is dependent on scientific innovation, demonstrated value, and compliance
with the rules described below. The criteria for acceptance of a scheme into the CCPP is under development.

It is recommended that parameterizations be comprised of the smallest units that will be used. For example, if a given
set of deep and shallow convection schemes will always be called together and in a pre-established order, it is accept-
able to group them within a single scheme. However, if one envisions that the deep and shallow convection schemes
may someday operate independently, it is recommended to code two separate schemes to allow more flexibility.

Some schemes in the CCPP have been implemented using a driver as an entry point. In this context, a driver is defined
as a wrapper that sits on top of the actual scheme and provides the CCPP entry points. In order to minimize the layers
of code in the CCPP, the implementation of a driver is discouraged, that is, it is preferable that the CCPP be composed
of atomic parameterizations. One example is the implementation of the MG microphysics, in which a simple entry
point leads to two versions of the scheme, MG2 and MG3. A cleaner implementation would be to retire MG2 in favor
of MG3, to put MG2 and MG3 as separate schemes, or to create a single scheme that can behave as MG2 nd MG3
depending on namelist options.

The implementation of a driver is reasonable under the following circumstances:

• To preserve schemes that are also distributed outside of the CCPP. For example, the Thompson microphysics
scheme is distributed both with the Weather Research and Forecasting (WRF) model and with the CCPP. Hav-
ing a driver with CCPP directives allows the Thompson scheme to remain intact so that it can be synchro-
nized between the WRF model and the CCPP distributions. See more in mp_thompson_hrrr.F90 in the
ccpp-physics/physics directory.

• To deal with optional arguments. A driver can check whether optional arguments have been provided by the
host model to either write out a message and return an error code or call a subroutine with or without optional
arguments. For example, see mp_thompson_hrrr.F90, radsw_main.f, or radlw_main.f in the
ccpp-physics/physics directory.

• To perform unit conversions or array transformations, such as flipping the vertical direction and rearranging the
index order, for example, cu_gf_driver.F90 in the ccpp-physics/physics directory.

Schemes in the CCPP are classified into two categories: primary schemes and interstitial schemes. Primary schemes
are the major parameterizations, such as PBL, microphysics, convection, radiation, surface layer parameterizations,
etc. Interstitial schemes are modularized pieces of code that perform data preparation, diagnostics, or other “glue”
functions and allow primary schemes to work together as a suite. They can be categorized as “scheme-specific” or
“suite-level”. Scheme-specific interstitial schemes augment a specific primary scheme (to provide additional function-
ality). Suite-level interstitial schemes provide additional functionality on top of a class of primary schemes, connect
two or more schemes together, or provide code for conversions, initializing sums, or applying tendencies, for example.
The rules and guidelines provided in the following sections apply both to primary and interstitial schemes.

5

CCPP Technical Documentation

2.1 General Rules

A CCPP-compliant scheme is in the form of Fortran modules. Listing 2.1 contains the template for a CCPP-compliant
scheme (ccpp/framework/doc/DevelopersGuide/scheme_template.F90), which includes three es-
sential components: the _init, _run, and _finalize subroutines. Each .f or .F90 file that contains an entry point(s) for
CCPP scheme(s) must be accompanied by a .meta file in the same directory as described in Section 2.2

module scheme_template

contains

subroutine scheme_template_init ()
end subroutine scheme_template_init

subroutine scheme_template_finalize()
end subroutine scheme_template_finalize

!> \section arg_table_scheme_template_run Argument Table
!! \htmlinclude scheme_template_run.html
!!

subroutine scheme_template_run (errmsg, errflg)

implicit none

!--- arguments
! add your arguments here
character(len=*), intent(out) :: errmsg
integer, intent(out) :: errflg

!--- local variables
! add your local variables here

continue

!--- initialize CCPP error handling variables
errmsg = ''
errflg = 0

!--- initialize intent(out) variables
! initialize all intent(out) variables here

!--- actual code
! add your code here

! in case of errors, set errflg to a value != 0,
! assign a meaningful message to errmsg and return

return

end subroutine scheme_template_run

end module scheme_template

Listing 2.1: Fortran template for a CCPP-compliant scheme showing the _init, _run, and _finalize subroutines.

More details are found below:

• Each scheme must be in its own module and must include three (_init, _run, and _finalize) subroutines (entry

6 Chapter 2. CCPP-Compliant Physics Parameterizations

CCPP Technical Documentation

points). The module name and the subroutine names must be consistent with the scheme name. The _init and
_finalize subroutines are run automatically when the CCPP-Physics are initialized and finalized, respectively.
These two subroutines may be called more than once, depending on the host model’s parallelization strategy,
and as such must be idempotent (the answer must be the same when the subroutine is called multiple times).
The _run subroutine contains the code to execute the scheme.

• Each .f or .F90 file with one or more CCPP entry point schemes must be accompanied by a a .meta file
containing metadata about the arguments to the scheme(s). For more information, see Section 2.2.

• Non-empty schemes must be preceded by the three lines below. These are markup comments used by Doxygen,
the software employed to create the scientific documentation, to insert an external file containing metadata
information (in this case, schemename_run.html) in the documentation. See more on this topic in Section
2.6.

!> \section arg_table_schemename_run Argument Table
!! \htmlinclude schemename_run.html
!!

• All external information required by the scheme must be passed in via the argument list. Statements such
as ‘use EXTERNAL_MODULE’ should not be used for passing in data and all physical constants should go
through the argument list.

• Note that standard names, variable names, module names, scheme names and subroutine names are all case
sensitive.

• Interstitial modules (scheme_pre and scheme_post) can be included if any part of the physics scheme
must be executed before (_pre) or after (_post) the module scheme defined above.

2.2 Metadata Table Rules

Each CCPP-compliant physics scheme (.f or .F90 file) must have a corresponding metadata file (.meta) that con-
tains information about CCPP entry point schemes and their dependencies. These files contain two types of metadata
tables: ccpp-table-properties and ccpp-arg-table, both of which are mandatory. The contents of these
tables are described in the sections below.

2.2.1 ccpp-table-properties

The [ccpp-table-properties] section is required in every metadata file and has four valid entries:

1. type: In the CCPP Physics, type can be scheme, module, or ddt and must match the type in the
associated [ccpp-arg-table] section(s).

2. name: This depends on the type. For types ddt and module (for variable/type/kind definitions), name
must match the name of the single associated [ccpp-arg-table] section. For type scheme, the name
must match the root names of the [ccpp-arg-table] sections for that scheme, without the suffixes _init,
_run, _finalize.

3. dependencies: type/kind/variable definitions and physics schemes often depend on code in other files (e.g.
“use machine” –> depends on machine.F). These dependencies must be listed in a comma-separated list. Rel-
ative path(s) to those file(s) must be specified here or using the relative_path entry described below.
Dependency attributes are additive; multiple lines containing dependencies can be used.

4. relative_path: If specified, the relative path is added to every file listed in the dependencies.

The information in this section table allows the CCPP to compile only the schemes and dependencies needed by the
selected CCPP suite(s).

2.2. Metadata Table Rules 7

CCPP Technical Documentation

An example for type and variable definitions in GFS_typedefs.meta is shown in Listing 2.2.

Note: A single metadata file may require multiple instances of the [ccpp-table-properties] section.

##
[ccpp-table-properties]

name = GFS_statein_type
type = ddt
dependencies =

[ccpp-arg-table]
name = GFS_statein_type
type = ddt

[phii]
standard_name = geopotential_at_interface

...
##
[ccpp-table-properties]

name = GFS_stateout_type
type = ddt
dependencies =

[ccpp-arg-table]
name = GFS_stateout_type
type = ddt

[gu0]
standard_name = x_wind_updated_by_physics

...
##
[ccpp-table-properties]

name = GFS_typedefs
type = module
relative_path = ../../ccpp/physics/physics
dependencies = machine.F,physcons.F90,radlw_param.f,radsw_param.f
dependencies = GFDL_parse_tracers.F90,rte-rrtmgp/rrtmgp/mo_gas_optics_rrtmgp.F90
dependencies = rte-rrtmgp/rte/mo_optical_props.F90
dependencies = rte-rrtmgp/extensions/cloud_optics/mo_cloud_optics.F90
dependencies = rte-rrtmgp/rrtmgp/mo_gas_concentrations.F90
dependencies = rte-rrtmgp/rte/mo_rte_config.F90
dependencies = rte-rrtmgp/rte/mo_source_functions.F90

[ccpp-arg-table]
name = GFS_typedefs
type = module

[GFS_cldprop_type]
standard_name = GFS_cldprop_type
long_name = definition of type GFS_cldprop_type
units = DDT
dimensions = ()
type = GFS_cldprop_type

...

Listing 2.2: Example of a CCPP-compliant metadata file showing the use of the [ccpp-table-properties] section and
how it relates to [ccpp-arg-table].

An example metadata file for the CCPP scheme mp_thompson.meta is shown in Listing 2.3.

8 Chapter 2. CCPP-Compliant Physics Parameterizations

CCPP Technical Documentation

[ccpp-table-properties]
name = mp_thompson
type = scheme
dependencies = machine.F,module_mp_radar.F90,module_mp_thompson.F90
dependencies = module_mp_thompson_make_number_concentrations.F90

##
[ccpp-arg-table]

name = mp_thompson_init
type = scheme

...

##
[ccpp-arg-table]

name = mp_thompson_run
type = scheme

...

##
[ccpp-arg-table]

name = mp_thompson_finalize
type = scheme

...

Listing 2.3: Example metadata file for a CCPP-compliant physics scheme using a single [ccpp-table-properties] and
how it defines dependencies for multiple [ccpp-arg-table].

2.2.2 ccpp-arg-table

• Metadata files (.meta) are in a relaxed config file format and contain metadata for one or more CCPP entry
point schemes. There should be one .meta file for each .f or .``F90`` file.

• For each CCPP compliant scheme, the .meta file should have this set of lines

[ccpp-arg-table]
name = <name>
type = <type>

• ccpp-arg-table indicates the start of a new metadata section for a given scheme.

• <name> is name of the corresponding subroutine/module.

• <type> can be scheme, module, or DDT.

• For empty schemes, the three lines above are sufficient. For non-empty schemes, the metadata must describe all
input and output arguments to the scheme using the following format:

[varname]
standard_name = <standard_name>
long_name = <long_name>
units = <units>
rank = <rank>
dimensions = <dimensions>
type = <type>
kind = <kind>
intent = <intent>
optional = <optional>

2.2. Metadata Table Rules 9

CCPP Technical Documentation

• The intent argument is only valid in scheme metadata tables, as it is not applicable to the other types.

• The following attributes are optional: long_name, kind, and optional.

• Lines can be combined using | as a separator, e.g.,

type = real | kind = kind_phys

• [varname] is the local name of the variable in the subroutine.

• The dimensions attribute should be empty parentheses for scalars or contain the standard_name for the start
and end for each dimension of an array. ccpp_constant_one is the assumed start for any dimension which
only has a single value. For example:

dimensions = ()
dimensions = (ccpp_constant_one:horizontal_loop_extent, vertical_level_dimension)
dimensions = (horizontal_dimension,vertical_dimension)
dimensions = (horizontal_dimension,vertical_dimension_of_ozone_forcing_data,number_of_
→˓coefficients_in_ozone_forcing_data)

• Listing 2.4 contains the template for a CCPP-compliant scheme (ccpp/framework/doc/
DevelopersGuide/scheme_template.meta),

[ccpp-table-properties]
name = ozphys
type = scheme
dependencies = machine.F

[ccpp-arg-table]
name = ozphys_init
type = scheme

##
[ccpp-arg-table]

name = ozphys_finalize
type = scheme

##
[ccpp-arg-table]

name = ozphys_run
type = scheme

[errmsg]
standard_name = ccpp_error_message
long_name = error message for error handling in CCPP
units = none
dimensions = ()
type = character
kind = len=*
intent = out
optional = F

[errflg]
standard_name = ccpp_error_flag
long_name = error flag for error handling in CCPP

Listing 2.4: Fortran template for a metadata file accompanying a CCPP-compliant scheme.

10 Chapter 2. CCPP-Compliant Physics Parameterizations

CCPP Technical Documentation

2.3 Input/output Variable (argument) Rules

• Variables available for CCPP physics schemes are identified by their unique standard_name. While an effort
is made to comply with existing standard_name definitions of the Climate and Forecast (CF) conventions
(http://cfconventions.org), additional names are used in the CCPP (see below for further information).

• A list of available standard names and an example of naming conventions can be found in ccpp/framework/
doc/DevelopersGuide/CCPP_VARIABLES_${HOST}.pdf, where ${HOST} is the name of the host
model. Running the CCPP prebuild script (described in Chapter 8) will generate a LaTeX source file that can
be compiled to produce a PDF file with all variables defined by the host model and requested by the physics
schemes.

• A standard_name cannot be assigned to more than one local variable (local_name). The local_name
of a variable can be chosen freely and does not have to match the local_name in the host model.

• All variable information (standard_name, units, dimensions) must match the specifications on the host model
side, but sub-slices can be used/added in the host model. For example, when using the UFS Atmosphere as
the host model, tendencies are split in GFS_typedefs.meta so they can be used in the necessary physics
scheme:

[dt3dt(:,:,1)]
standard_name = cumulative_change_in_temperature_due_to_longwave_radiation
long_name = cumulative change in temperature due to longwave radiation
units = K
dimensions = (horizontal_dimension,vertical_dimension)
type = real
kind = kind_phys

[dt3dt(:,:,2)]
standard_name = cumulative_change_in_temperature_due_to_shortwave_radiation
long_name = cumulative change in temperature due to shortwave radiation
units = K
dimensions = (horizontal_dimension,vertical_dimension)
type = real
kind = kind_phys

[dt3dt(:,:,3)]
standard_name = cumulative_change_in_temperature_due_to_PBL
long_name = cumulative change in temperature due to PBL
units = K
dimensions = (horizontal_dimension,vertical_dimension)
type = real
kind = kind_phys

• The two mandatory variables that any scheme-related subroutine must accept as intent(out) arguments are
errmsg and errflg (see also coding rules in Section 2.4).

• At present, only two types of variable definitions are supported by the CCPP-framework:

– Standard Intrinsic Fortran variables are preferred (character, integer, logical, real). For char-
acter variables, the length should be specified as * in order to allow the host model to specify the corre-
sponding variable with a length of its own choice. All others can have a kind attribute of a kind type
defined by the host model.

– Derived data types (DDTs). While the use of DDTs is discouraged, some use cases may justify their
application (e.g. DDTs for chemistry that contain tracer arrays or information on whether tracers are
advected). It should be understood that use of DDTs within schemes forces their use in host models and
potentially limits a scheme’s portability. Where possible, DDTs should be broken into components that
could be usable for another scheme of the same type.

2.3. Input/output Variable (argument) Rules 11

http://cfconventions.org

CCPP Technical Documentation

• It is preferable to have separate variables for physically-distinct quantities. For example, an array containing
various cloud properties should be split into its individual physically-distinct components to facilitate generality.
An exception to this rule is if there is a need to perform the same operation on an array of otherwise physically-
distinct variables. For example, tracers that undergo vertical diffusion can be combined into one array where
necessary. This tactic should be avoided wherever possible, and is not acceptable merely as a convenience.

• If a scheme is to make use of CCPP’s subcycling capability, the loop counter can be obtained from CCPP as an
intent(in) variable (see a mandatory list of variables that are provided by the CCPP-Framework and/or the
host model for this and other purposes).

2.4 Coding Rules

• Code must comply to modern Fortran standards (Fortran 90/95/2003).

• Labeled end statements should be used for modules, subroutines and functions, for example, module
scheme_template → end module scheme_template.

• Implicit variable declarations are not allowed. The implicit none statement is mandatory and is preferable
at the module-level so that it applies to all the subroutines in the module.

• All intent(out) variables must be set inside the subroutine, including the mandatory variables errflg and
errmsg.

• Decomposition-dependent host model data inside the module cannot be permanent, i.e. variables that contain
domain-dependent data cannot be kept using the save attribute.

• goto statements are not alowed.

• common blocks are not allowed.

• Errors are handled by the host model using the two mandatory arguments errmsg and errflg. In the event
of an error, a meaningful error message should be assigned to errmsg and set errflg to a value other than 0,
for example:

write (errmsg, ‘(*(a))’) ‘Logic error in scheme xyz: ...’
errflg = 1
return

• Schemes are not allowed to abort/stop the program.

• Schemes are not allowed to perform I/O operations except for reading lookup tables or other information needed
to initialize the scheme, including stdout and stderr. Diagnostic messages are tolerated, but should be minimal.

• Line lengths of no more than 120 characters are suggested for better readability.

Additional coding rules are listed under the Coding Standards section of the NOAA NGGPS Overarching
System team document on Code, Data, and Documentation Management for NOAA Environmental Model-
ing System (NEMS) Modeling Applications and Suites (available at https://docs.google.com/document/u/1/d/
1bjnyJpJ7T3XeW3zCnhRLTL5a3m4_3XIAUeThUPWD9Tg/edit#heading=h.97v79689onyd).

12 Chapter 2. CCPP-Compliant Physics Parameterizations

https://docs.google.com/document/u/1/d/1bjnyJpJ7T3XeW3zCnhRLTL5a3m4_3XIAUeThUPWD9Tg/edit#heading=h.97v79689onyd
https://docs.google.com/document/u/1/d/1bjnyJpJ7T3XeW3zCnhRLTL5a3m4_3XIAUeThUPWD9Tg/edit#heading=h.97v79689onyd

CCPP Technical Documentation

2.5 Parallel Programming Rules

Most often shared memory (OpenMP: Open Multi-Processing) and MPI (Message Passing Interface) communication
are done outside the physics in which case the physics looping and arrays already take into account the sizes of
the threaded tasks through their input indices and array dimensions. The following rules should be observed when
including OpenMP or MPI communication in a physics scheme:

• Shared-memory (OpenMP) parallelization inside a scheme is allowed with the restriction that the number of
OpenMP threads to use is obtained from the host model as an intent(in) argument in the argument list
(Listing 6.2).

• MPI communication is allowed in the _init and _finalize phase for the purpose of computing, reading
or writing scheme-specific data that is independent of the host model’s data decomposition. An example is the
initial read of a lookup table of aerosol properties by one or more MPI processes, and its subsequent broadcast
to all processes. Several restrictions apply:

– The implementation of reading and writing of data must be scalable to perform efficiently from a few to
millions of tasks.

– The MPI communicator must be provided by the host model as an intent(in) argument in the argument
list (see list of mandatory variables).

– The use of MPI_COMM_WORLD is not allowed.

• Calls to MPI and OpenMP functions, and the import of the MPI and OpenMP libraries, must be guarded by
C preprocessor directives as illustrated in the following listing. OpenMP pragmas can be inserted without C
preprocessor guards, since they are ignored by the compiler if the OpenMP compiler flag is omitted.

#ifdef MPI
use mpi

#endif
#ifdef OPENMP

use omp_lib
#endif
...
#ifdef MPI

call MPI_BARRIER(mpicomm, ierr)
#endif

#ifdef OPENMP
me = OMP_GET_THREAD_NUM()

#else
me = 0

#endif

• For Fortran coarrays, consult with the DTC helpdesk (gmtb-help@ucar.edu).

2.6 Scientific Documentation Rules

Technically, scientific documentation is not needed for a parameterization to work with the CCPP. However, scientific
and technical documents are important for code maintenance and for fostering understanding among stakeholders. As
such, it is required of physics schemes in order to be included in the CCPP. This section describes the process used
for documenting parameterizations in the CCPP. Doxygen was chosen as a tool for generating human-readable output
due to its built-in functionality with Fortran, its high level of configurability, and its ability to parse inline comments
within the source code. Keeping documentation with the source itself increases the likelihood that the documentation
will be updated along with the underlying code. Additionally, inline documentation is amenable to version control.

2.5. Parallel Programming Rules 13

mailto:gmtb-help@ucar.edu

CCPP Technical Documentation

The purpose of this section is to provide an understanding of how to properly document a physics scheme using
doxygen inline comments in the Fortran code and metadata information contained in the .meta files. It covers what
kind of information should be in the documentation, how to mark up the inline comments so that doxygen will parse
them correctly, where to put various comments within the code, how to include information from the .meta files, and
how to configure and run doxygen to generate HTML output. For an example of the HTML rendering of the CCPP
Scientific Documentation, see https://dtcenter.org/GMTB/v4.0/sci_doc. Part of this documentation, namely metadata
about subroutine arguments, has functional significance as part of the CCPP infrastructure. The metadata must be in
a particular format to be parsed by Python scripts that “automatically” generate a software cap for a given physics
scheme. Although the procedure outlined herein is not unique, following it will provide a level of continuity with
previous documented schemes.

Reviewing the documentation for CCPP parameterizations is a good way of getting started in writing documentation
for a new scheme.

2.6.1 Doxygen Comments and Commands

All doxygen commands start with a backslash (“\”) or an at-sign (“@”). The doxygen inline comment blocks begin
with “!>”, and subsequent lines begin with “!!”, which means that regular Fortran comments using “!” are not
parsed by doxygen.

In the first line of each Fortran file, a brief one-sentence overview of the file purpose is present using the doxygen
command “\\file”:

! !> \file cires_ugwp.F90
!! This file contains the Unified Gravity Wave Physics (UGWP) scheme by Valery Yudin
→˓(University of Colorado, CIRES)

A parameter definition begins with “!<”, where the sign ‘<’ just tells Doxygen that documentation follows.
Example:

integer, parameter, public :: NF_VGAS = 10 !< number of gas species
integer, parameter :: IMXCO2 = 24 !< input CO2 data longitude points
integer, parameter :: JMXCO2 = 12 !< input CO2 data latitude points
integer, parameter :: MINYEAR = 1957 !< earlist year 2D CO2 data available

2.6.2 Doxygen Documentation Style

To document a physics suite, a broad array of information should be included in order to serve both software engineer-
ing and scientific purposes. The documentation style could be divided into four categories:

• Doxygen Files

• Doxygen Pages (overview page and scheme pages)

• Doxygen Modules

• Bibliography

14 Chapter 2. CCPP-Compliant Physics Parameterizations

https://dtcenter.org/GMTB/v4.0/sci_doc

CCPP Technical Documentation

Doxygen files

Doxygen provides the “\\file” tag as a way to provide documentation on the Fortran source code file level. That
is, in the generated documentation, one may navigate by source code filenames (if desired) rather than through a
“functional” navigation. The most important documentation organization is through the “module” concept mentioned
below, because the division of a scheme into multiple source files is often functionally irrelevant. Nevertheless, using
a “\\file” tag provides an alternate path to navigate the documentation and it should be included in every source
file. Therefore, it is prudent to include a small documentation block to describe what code is in each file using the
“\\file” tag, e.g.:

!>\file cu_gf_driver.F90
!! This file is scale-aware Grell-Freitas cumulus scheme driver.

The brief description for each file is displayed next to the source filename on the doxygen-generated “File List” page:

Doxygen Overview Page

Pages in Doxygen can be used for documentation that is not directly attached to a source code entity such as file or
module. They are external text files that generate pages with a high-level scientific overview and typically contain a
longer description of a project or suite. You can refer to any source code entity from within the page.

The DTC maintains a main page, created by the Doxygen command “\\mainpage”, containing an overall descrip-
tion and background of the CCPP. Physics developers do not have to edit the file with the mainpage, which has a
user-visible title, but not label:

/**
\mainpage Introduction

(continues on next page)

2.6. Scientific Documentation Rules 15

CCPP Technical Documentation

(continued from previous page)

...

*/

All other pages listed under the main page are created using the Doxygen tag “\\page” described in the next section.
In any Doxygen page, you can refer to any entity of source code by using Doxygen tag “\\ref” or “@ref”.
Example in suite_FV3_GFS_v15p2.xml.txt:

The GFS v15p2 physics suite uses the parameterizations in the following order, as defined in

\c FV3_GFS_v15p2 :
- \ref fast_sat_adj
- \ref GFS_RRTMG
- \ref GFS_SFCLYR
- \ref GFS_NSST
- \ref GFS_NOAH
- \ref GFS_SFCSICE
- \ref GFS_HEDMF
- \ref cires_ugwp
- \ref GFS_RAYLEIGH
- \ref GFS_OZPHYS
- \ref GFS_H2OPHYS
- \ref GFS_SAMFdeep
- \ref GFS_SAMFshal
- \ref GFDL_cloud
- \ref GFS_CALPRECIPTYPE
- \ref STOCHY_PHYS

The HTML result is here. You can see that the “-” signs before “@ref” generate a list with bullets. Doxygen
command “\\c” displays its argument using a typewriter font.

Physics Scheme Pages

Each major scheme in CCPP should have its own scheme page containing an overview of the parameterization. These
pages are not tied to the Fortran code directly; instead, they are created with a separate text file that starts with the
command “\\page”. Scheme pages are stored in the ccpp-physics/physics/docs/pdftxt directory.
Each page has a label (e.g., “GFS_SAMFdeep” in the following example) and a user-visible title (“GFS Scale-Aware
Simplified Arakawa-Schubert (sa-SAS) Deep Convection Scheme” in the following example). It is noted that labels
must be unique across the entire doxygen project so that the “\\ref” command can be used to create an unambiguous
link to the structuring element. It therefore makes sense to choose label names that refer to their context.

/**
\page GFS_SAMFdeep GFS Scale-Aware Simplified Arakawa-Schubert (sa-SAS) Deep
→˓Convection Scheme
\section des_deep Description
The scale-aware mass-flux (SAMF) deep convection scheme is an
updated version of the previous Simplified Arakawa-Schubert (SAS) scheme
with scale and aerosol awareness and parameterizes the effect of deep
convection on the environment (represented by the model state variables)
in the following way ...

\section intra_deep Intraphysics Communication
\ref arg_table_samfdeepcnv_run

\section gen_al_deep General Algorithm
\ref general_samfdeep

(continues on next page)

16 Chapter 2. CCPP-Compliant Physics Parameterizations

https://dtcenter.org/GMTB/v4.0/sci_doc/GFS_v15p2_page.html

CCPP Technical Documentation

(continued from previous page)

*/

The physics scheme page will often describe the following:

1. Description section (“\\section”), which usually includes:

• Scientific origin and scheme history (“\\cite”)

• Key features and differentiating points

• A picture is worth a thousand words (“\\image”)

To insert images into doxygen documentation, you’ll need to have your images ready in a graphical format,
such as Portable Network Graphic (png), depending on which type of doxygen output you are planning
to generate. For example, for LaTeX output, the images must be provided in Encapsulated PostScript
(.eps), while for HTML output the images can be provided in the png format. Images are stored in
ccpp-physics/physics/docs/img directory. Example of including an image for HTML output:

\image html gfdl_cloud_mp_diagram.png "Figure 1: GFDL MP at a glance (Courtesy of S.
→˓J. Lin at GFDL)" width=10cm

2. Intraphysics Communication Section (“\\section”)

The argument table for CCPP entry point subroutine {scheme}_run will be in this section. It is
created by inserting a reference link (“\\ref”) to the table in the Fortran code for the scheme.

3. General Algorithm Section (“\\section”)

The general description of the algorithn will be in this section. It is created by inserting a reference link (“\\
ref”) in the Fortran code for the scheme.

The symbols “/**” and “*/” need to be the first and last entries of the page. See an example of GFS Scale-Aware
Simplified Arakawa-Schubert (sa-SAS) Deep Convection Scheme page in the previous page.

Note that separate pages can also be created to document something that is not a scheme. For example, a page could
be created to describe a suite, or how a set of schemes work together. Doxygen automatically generates an index of all
pages that is visible at the top-level of the documentation, thus allowing the user to quickly find, and navigate between,
the available pages.

Doxygen Modules

The CCPP documentation is based on doxygen modules (note this is not the same as Fortran modules). Each doxygen
module pertains to a particular parameterization and is used to aggregate all code related to that scheme, even when it is
in separate files. Since doxygen cannot know which files or subroutines belong to each physics scheme, each relevant
subroutine must be tagged with the module name. This allows doxygen to understand your modularized design and
generate the documentation accordingly. Here is a list of module list defined in CCPP.

A module is defined using:

!>\defgroup group_name group_title

Where group_name is the identifier and the group_title is what the group is referred to in the output. In the
example below, we’re defining a parent module “GFS radsw Main”:

!> \defgroup module_radsw_main GFS radsw Main
!! This module includes NCEP's modifications of the RRTMG-SW radiation
!! code from AER.

(continues on next page)

2.6. Scientific Documentation Rules 17

https://dtcenter.org/GMTB/v4.0/sci_doc/modules.html

CCPP Technical Documentation

(continued from previous page)

!! ...
!!\author Eli J. Mlawer, emlawer@aer.com
!!\author Jennifer S. Delamere, jdelamer@aer.com
!!\author Michael J. Iacono, miacono@aer.com
!!\author Shepard A. Clough
!!\version NCEP SW v5.1 Nov 2012 -RRTMG-SW v3.8
!!

One or more contact persons should be listed with author. If you make significant modifications or additions to a file,
consider adding an author and a version line for yourself. The above example generates the Author, Version sections
on the page. All email addresses are converted to mailto hypertext links automatically:

Author Eli J. Mlawer, emlawer@aer.com

Jennifer S. Delamere, jdelamer@aer.com

Michael J. Iacono, miacono@aer.com

Shepard A. Clough

Version NCEP SW v5.1 Nov 2012 -RRTMG-SW v3.8

In order to include other pieces of code in the same module, the following tag must be used at the beginning of a
comment block:

\ingroup group_name

For example:

!>\ingroup module_radsw_main
!> The subroutine computes the optical depth in band 16: 2600-3250
!! cm-1 (low - h2o,ch4; high - ch4)
!-----------------------------------

subroutine taumol16
!...................................

In the same comment block where a group is defined for a physics scheme, there should be some additional documenta-
tion. First, using the “\\brief” command, a brief one or two sentence description of the scheme should be included.
After a blank doxygen comment line, begin the scheme origin and history using “\\version”, “\\author” and
“\\date”.

Each subroutine that is a CCPP entry point to a parameterization, should be further documented with a documentation
block immediately preceding its definition in the source. The documentation block should include at least the following
components:

• A brief one- or two-sentence description with the "\\brief" tag

• A more detailed one or two paragraph description of the function of the subroutine

• A comment indicating that metadata information about the subroutine arguments follows (in this example, the
subroutine is called SUBROUTINE_NAME. Note that this line is also functional documentation used during the
CCPP prebuild step.

!! \section arg_table_SUBROUTINE_NAME Argument Table

• For subroutines that are non-empty, a second comment indicating that a table of metadata to describe the subrou-
tine arguments will be included from a separate file in HTML format (in this case, file SUBROUTINE_NAME.
html). Note that empty subroutines, as is sometimes the case for init and finalize subroutines, do not
require the inclusion of a file with metadata information. Please refer to the section below for information on
how to generate the HTML files with metadata information from the .meta files.

18 Chapter 2. CCPP-Compliant Physics Parameterizations

mailto:emlawer@aer.com
mailto:jdelamer@aer.com
mailto:miacono@aer.com

CCPP Technical Documentation

The argument table should be immediately followed by a blank doxygen line “!!”.

!! \htmlinclude SUBROUTINE_NAME.html
!!

• A section called “General Algorithm” with a bullet or numbered list of the tasks completed in the subroutine
algorithm

• At the end of initial subroutine documentation block, a “Detailed algorithm” section is started and the entirety
of the code is encompassed with the “!> @{” and “!> @}” delimiters. This way, any comments explaining
detailed aspects of the code are automatically included in the “Detailed Algorithm” section.

For subroutines that are not a CCPP entry point to a scheme, no inclusion of metadata information is required. But it
is suggested that following “\\ingroup” and “\\brief”, use “\\param” to define each argument with local
name, a short description and unit, i.e.,

!> \ingroup HEDMF
!! \brief This subroutine is used for calculating the mass flux and updraft
→˓properties.
!! ...
!!
!! \param[in] im integer, number of used points
!! \param[in] ix integer, horizontal dimension
!! \param[in] km integer, vertical layer dimension
!! \param[in] ntrac integer, number of tracers
!! \param[in] delt real, physics time step
!! ...
!! \section general_mfpbl mfpbl General Algorithm
!! -# Determine an updraft parcel's entrainment rate, buoyancy, and vertical
→˓velocity.
!! -# Recalculate the PBL height ...
!! -# Calculate the mass flux profile and updraft properties.
!! \section detailed_mfpbl mfpbl Detailed Algorithm
!> @{

subroutine mfpbl(im,ix,km,ntrac,delt,cnvflg, &
& zl,zm,thvx,q1,t1,u1,v1,hpbl,kpbl, &
& sflx,ustar,wstar,xmf,tcko,qcko,ucko,vcko)
...

end subroutine mfpbl
!> @}

Bibliography

Doxygen can handle in-line paper citations and link to an automatically created bibliography page. The bibliographic
data for any papers that are cited need to be put in BibTeX format and saved in a .bib file. The bib file for CCPP is
included in the repository, and the doxygen configuration option cite_bib_files points to the included file.

Citations are invoked with the following tag:

\cite bibtex_key_to_paper

2.6. Scientific Documentation Rules 19

CCPP Technical Documentation

Equations

See link for information about including equations. For the best rendering, the following option should be set in the
Doxygen configuration file:

USE_MATHJAX = YES
MATHJAX_RELPATH = https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2

There are many great online resources to use the LaTeX math typesetting used in doxygen.

2.6.3 Doxygen Configuration

Configuration File

The CCPP is distributed with a doxygen configuration file ./ccpp/physics/physics/docs/
ccpp_doxyfile, such that you don’t need to create an additional one.

If starting from scratch, you can generate a default configuration file using the command:

doxygen -g <config_file>

Then you can edit the default configuration file to serve your needs. The default file includes plenty of comments to
explain all the options. Some of the important things you need to pay attention to are:

• The name of your project:

PROJECT_NAME = ‘your project name’

• The input files (relative to the directory where you run doxygen):

INPUT =

The following lines should be listed here: the doxygen mainpage text file, the scheme pages, and the source codes to
be contained in the output. The order in which schemes are listed determines the order in the HTML result.

• The directory where to put the documentation (if you leave it empty, then the documentation will be created in
the directory where you run doxygen):

OUTPUT_DIRECTORY = doc

• The type of documentation you want to generate (HTML, LaTeX and/or something else):

GENERATE_HTML = YES

If HTML is chosen, the following tells doxygen where to put the documentation relative to the OUT-
PUT_DIRECTORY:

HTML_OUTPUT = html

and

HTML_FILE_EXTENSION = .html

determines the extension of the files.

• Other important settings for a Fortran code project are:

20 Chapter 2. CCPP-Compliant Physics Parameterizations

http://www.doxygen.nl/manual/formulas.html

CCPP Technical Documentation

OPTIMIZE_FOR_FORTRAN = YES
EXTENSION_MAPPING = .f=FortranFree \

.F90=FortranFree \

.f90=FortranFree
LAYOUT_FILE = ccpp_dox_layout.xml
CITE_BIB_FILES = library.bib
FILE_PATTERN = *.f \

*.F90 \

*.f90 \

*.txt
GENERATE_TREEVIEW = yes

Doxygen files for layout (ccpp_dox_layout.xml), a HTML style (ccpp_dox_extra_style.css), and bib-
liography (library.bib) are provided with the CCPP. Additionally, a configuration file is supplied, with the fol-
lowing variables modified from the default:

Diagrams

On its own, Doxygen is capable of creating simple text-based class diagrams. With the help of the additional soft-
ware GraphViz, Doxygen can generate additional graphics-based diagrams, optionally in Unified Modeling Language
(UML) style. To enable GraphViz support, the configure file parameter “HAVE_DOT” must be set to “YES”.

You can use doxygen to create call graphs of all the physics schemes in CCPP. In order to create the call graphs you
will need to set the following options in your doxygen config file:

HAVE_DOT = YES
EXTRACT_ALL = YES
EXTRACT_PRIVATE = YES
EXTRACT_STATIC = YES
CALL_GRAPH = YES

Note that will need the DOT (graph description language) utility to be installed when starting doxygen. Doxygen will
call it to generate the graphs. On most distributions the DOT utility can be found in the GraphViz package. Here is the
call graph for subroutine mpdrv in GFDL cloud microphysics generated by doxygen:

2.6.4 Including metadata information

As described above, a table of metadata information should be included in the documentation for every CCPP entry-
point scheme. Before doxygen is run, the table for each scheme must be manually created in separate files in HTML
format, with one file per non-empty scheme. The HTML files are included in the Fortran files using the doygen markup
below.

!! \htmlinclude SUBROUTINE_NAME.html
!!

The tables should be created using a Python script distrbuted with the CCPP Framework, ccpp/framework/
scripts/metadata2html.py. The syntax for running this script from the directory above where the CCPP
is installed is:

./ccpp/framework/scripts/metadata2html.py -m ccpp/physics/physics/file.meta -o ccpp/
→˓physics/physics/docs

where -m is used to specify a file with metadata information and -o is used to specify the directory for output. Note
that a single input file (.meta) may have more than one CCPP entrypoint scheme, and therefore can be used to
generate more than one HTML file.

2.6. Scientific Documentation Rules 21

CCPP Technical Documentation

22 Chapter 2. CCPP-Compliant Physics Parameterizations

CCPP Technical Documentation

Note that the .meta files are supplied with the CCPP Physics, and that there is a .meta file for each Fortran file
that contains one or more CCPP entrypoint schemes. The .meta files are located in the same directory as the scheme
Fortran files (ccpp/physics/physics).

To generate a complete Scientific Documentation, documentation, script ./ccpp/framework/scripts/
metadata2html.py must be run separately for each .meta file available in ccpp/physics/physics. Al-
ternatively, a batch mode exists that converts all metadata files associated with schemes and variable definitions in the
CCPP prebuild config:

./ccpp/framework/scripts/metadata2html.py -c ccpp/config/ccpp_prebuild_config.py

Note that the options -c and -m are mutually exclusive, but that one of them is required. Option -m also requires to
specify -o, while option -c will ignore -o. For more information, use

./ccpp/framework/scripts/metadata2html.py --help

2.6.5 Using Doxygen

In order to generate the doxygen-based documentation, one needs to follow five steps:

1. Have the doxygen executable installed on your computer. For the NOAA machine Hera and the NCAR machine
Cheyenne, the doxygen executable resides in /usr/bin, which should be in your $PATH. If you need to install
doxygen in another location, add the following line into the .cshrc file in your home directory:

alias doxygen /path/to/doxygen

Source your .cshrc file.

2. Document your code, including doxygen main page, scheme pages and inline comments within source code as
described above.

3. Run metadata2html.py to create files in HTML format containing metadata information for each CCPP
entrypoint scheme.

4. Prepare a Bibliography file in BibTex format for papers referred to in the physics suites.

5. Create or edit a doxygen configuration file to control what doxygen pages, source files and bibliography file get
parsed, how the source files get parsed, and to customize the output.

6. Run doxygen from directory ccpp/physics/physics/docs using the command line to specify the doxy-
gen configuration file as an argument:

$doxygen $PATH_TO_CONFIG_FILE/<config_file>

Running this command may generate warnings or errors that need to be fixed in order to pro-
duce proper output. The location and type of output (HTML, LaTeX, etc.) are specified in the
configuration file. The generated HTML documentation can be viewed by pointing an HTML
browser to the index.html file in the ./docs/doc/html/ directory.

For precise instructions on creating the scientific documentation, contact the DTC helpdesk at gmtb-help@ucar.edu.

2.6. Scientific Documentation Rules 23

mailto:gmtb-help@ucar.edu

CCPP Technical Documentation

24 Chapter 2. CCPP-Compliant Physics Parameterizations

CHAPTER

THREE

CCPP CONFIGURATION AND BUILD OPTIONS

While the CCPP-Framework code can be compiled independently, the CCPP-Physics code can only be used within
a host modeling system that provides the variables and the kind, type, and DDT definitions. As such, it is advisable
to integrate the CCPP configuration and build process with the host model’s. Part of the build process, known as the
prebuild step since it precedes compilation, involves running a Python script that performs multiple functions. These
functions include configuring the CCPP-Physics for use with the host model and autogenerating FORTRAN code to
communicate variables between the physics and the dynamical core. The prebuild step will be discussed in detail in
Chapter 8.

The SCM and the UFS Atmosphere are supported for use with the CCPP. In the case of the UFS Atmosphere as the
host model, there are several build options. The choice can be specified through command-line options supplied to the
compile.sh script for manual compilation or through a regression test (RT) configuration file. Detailed instructions
for building the UFS Atmosphere and the SCM are discussed in the UFS Weather Model User Guide and the SCM
User Guide.

By default, the code is compiled with CCPP enabled, that is, CCPP-Framework and CCPP-physics are linked to the
executable. Any parameterization to be called as part of a suite must be CCPP-compliant and available in CCPP-
Physics. Physics scheme selection and order is determined at runtime by an external suite definition file (SDF; see
Chapter 4 for further details on the SDF).

For all options that activate the CCPP, the ccpp_prebuild.py Python script must be run. This may be done manu-
ally or as part of a host model build-time script. In the case of the SCM, ccpp_prebuild.pymust be run manually,
as it is not incorporated in that model’s build system. In the case of the UFS Atmosphere, ccpp_prebuild.py is
run automatically as a step in the build system, although it can be run manually for debugging purposes.

The path to a host-model specific configuration file is the only required argument to ccpp_prebuild.py. Such
files are included with the SCM and ufs-weather-model repositories, and must be included with the code of any host
model to use the CCPP. Figure 3.1 depicts the main functions of the ccpp_prebuild.py script for the build.
Using information included in the configuration file and the SDF(s), the script parses the SDF(s) and only matches
provided/requested variables that are used within the particular physics suite(s). The script autogenerates software
caps for the physics suite(s) as a whole and for each physics group as defined in the SDF(s). At runtime, a single SDF
is used to select the suite that will be executed in the run. This arrangement allows for efficient variable recall (which
is done once for all physics schemes within each group of a suite), leads to a reduced memory footprint of the CCPP,
and speeds up execution.

25

https://ufs-weather-model.readthedocs.io/en/ufs-v1.0.0/BuildingAndRunning.html#building-the-weather-model
https://dtcenter.org/GMTB/v4.0/scm-ccpp-guide-v4.0.pdf
https://dtcenter.org/GMTB/v4.0/scm-ccpp-guide-v4.0.pdf

CCPP Technical Documentation

Fig. 3.1: This figure depicts an example of the interaction between an atmospheric model and CCPP-Physics for one
timestep, and a single SDF, with execution progressing toward the right. The “Atmosphere Driver” box represents
model superstructure code, perhaps responsible for I/O, time-stepping, and other model component interactions. Soft-
ware caps are autogenerated for the suite and physics groups, defined in the SDF provided to the ccpp_prebuild.
py script. The suite must be defined via the SDF at prebuild time. When multiple SDFs are provided during the build
step, multiple suite caps and associated group caps are produced, but only one is used at runtime.

26 Chapter 3. CCPP Configuration and Build Options

CHAPTER

FOUR

CONSTRUCTING SUITES

4.1 Suite Definition File

The SDF is a file in XML format used to specify the name of the suite, the physics schemes to run, groups of physics
that run together, the order in which to run the physics, and whether subcycling will be used to run any of the parame-
terizations with shorter timesteps. The SDF files are part of the host model code.

In addition to the primary parameterization categories (such as radiation, boundary layer, deep convection, resolved
moist physics, etc.), the SDF can have an arbitrary number of interstitial schemes in between the parameterizations to
preprocess or postprocess data. In many models, this interstitial code is not obvious to the model user but, with the
SDF, both the primary parameterizations and the interstitial schemes are listed explicitly.

The name of the suite is listed at the top of the SDF and must be consistent with the name of the SDF: file
suite_ABC.xml contains suite name=’ABC’, as in the example below. The suite name is followed by the
time_vary step, which is run only once when the model is first initialized.

<suite name="ABC" lib="ccppphys" ver="3.0.0">
<!-- <init></init> -->
<group name="time_vary">
<subcycle loop="1">

<scheme>GFS_time_vary_pre</scheme>
<scheme>GFS_rrtmg_setup</scheme>
<scheme>GFS_rad_time_vary</scheme>
<scheme>GFS_phys_time_vary</scheme>

</subcycle>
</group>

4.1.1 Groups

The concept of grouping physics in the SDF (reflected in the <group name="XYZ"> elements) enables “groups”
of parameterizations to be called with other computation (such as related to the dycore, I/O, etc.) in between. One can
edit the groups to suit the needs of the host application. For example, if a subset of physics schemes needs to be more
tightly connected with the dynamics and called more frequently, one could create a group consisting of that subset and
place a ccpp_run call in the appropriate place in the host application. The remainder of the parameterization groups
could be called using ccpp_run calls in a different part of the host application code.

27

CCPP Technical Documentation

4.1.2 Subcycling

The SDF allows subcycling of schemes, or calling a subset of schemes at a smaller time step than others. The
<subcycle loop = n> element in the SDF controls this function. All schemes within such an element are called
n times during one ccpp_run call. An example of this is found in the FV3_GFS_v15.xml SDF, where the surface
schemes are executed twice for each timestep (implementing a predictor/corrector paradigm):

<!-- Surface iteration loop -->
<subcycle loop="2">

<scheme>sfc_diff</scheme>
<scheme>GFS_surface_loop_control_part1</scheme>
<scheme>sfc_nst_pre</scheme>
<scheme>sfc_nst</scheme>
<scheme>sfc_nst_post</scheme>
<scheme>lsm_noah</scheme>
<scheme>sfc_sice</scheme>
<scheme>GFS_surface_loop_control_part2</scheme>

</subcycle>

Note that currently no time step information is included in the SDF and that the subcycling of schemes resem-
bles more an iteration over schemes with the loop counter being available as integer variable with standard name
ccpp_loop_counter. If subcycling is used for a set of parameterizations, the smaller time step must be an input argu-
ment for those schemes.

4.1.3 Order of Schemes

Schemes may be interdependent and the order in which the schemes are run may make a difference in the model
output. Reading the SDF(s) and defining the order of schemes for each suite happens at compile time. Some schemes
require additional interstitial code that must be run before or after the scheme and cannot be part of the scheme itself.
This can be due to dependencies on other schemes and/or the order of the schemes as determined in the SDF. Note
that more than one SDF can be supplied at compile time, but only one can be used at runtime.

4.2 Interstitial Schemes

The SDF can have an arbitrary number of additional interstitial schemes in between the primary parameterizations to
preprocess or postprocess data. There are two main types of interstitial schemes, scheme-specific and suite-level. The
scheme-specific interstitial scheme is needed for one specific scheme and the suite-leve interstitial scheme processes
data that are relevant for various schemes within a suite.

4.3 SDF Examples

4.3.1 Simplest Case: Single Group and no Subcycling

Consider the simplest case, in which all physics schemes are to be called together in a single group with no subcycling
(i.e. subcycle loop=”1”). The subcycle loop must be set in each group. The SDF suite_Suite_A.xml
could contain the following:

<?xml version="1.0" encoding="UTF-8"?>
<suite name="Suite_A" lib="ccppphys" ver="3.0.0">

...

(continues on next page)

28 Chapter 4. Constructing Suites

CCPP Technical Documentation

(continued from previous page)

<group name="physics">
<subcycle loop="1">

<scheme>Suite_A_interstitial_1</scheme>
<scheme>scheme_1_pre</scheme>
<scheme>scheme_1</scheme>
<scheme>scheme_1_post</scheme>
<scheme>scheme_2_generic_pre</scheme>
<scheme>scheme_2</scheme>
<scheme>scheme_2_generic_post</scheme>
<scheme>Suite_A_interstitial_2</scheme>
<scheme>scheme_3</scheme>
...
<scheme_n</scheme>

</subcycle>
</group>

</suite>

Note the syntax of the SDF file. The root (the first element to appear in the xml file) is the suitewith the name of the
suite given as an attribute. In this example, the suite name is Suite_A. Within each suite are groups, which specify a
physics group to call (i.e. physics, fast_physics, time_vary, radiation, stochastics). Each
group has an option to subcycle. The value given for loop determines the number of times all of the schemes within the
subcycle element are called. Finally, the scheme elements are children of the subcycle elements and are listed
in the order they will be executed. In this example, scheme_1_pre and scheme_1_post are scheme-specific
preprocessing and postprocessing interstitial schemes, respectively. The suite-level preprocessing and postprocessing
interstitial schemes scheme_2_generic_pre and scheme_2_generic_post are also called in this exam-
ple. Suite_A_interstitial_2 is a scheme for suite_A and connects various schemes within this suite.

4.3.2 Case with Multiple Groups

Some models require that the physics be called in groups, with non-physics computations in-between the groups.

<?xml version="1.0" encoding="UTF-8"?>
<suite name="Suite_B" lib="ccppphys" ver="3.0.0">

<group name="g1">
<subcycle loop="1">
<scheme>SchemeX</scheme>
<scheme>SchemeY</scheme>
<scheme>SchemeZ</scheme>

</subcycle>
</group>
<group name="g2">
<subcycle loop="1">
<scheme>SchemeA</scheme>
<scheme>SchemeB</scheme>
<scheme>SchemeC</scheme>

</subcycle>
</group>

</suite>

4.3. SDF Examples 29

CCPP Technical Documentation

4.3.3 Case with Subcycling

Consider the case where a model requires that some subset of physics be called on a smaller time step than the rest of
the physics, e.g. for computational stability. In this case, one would make use of the subcycle element as follows:

<?xml version="1.0" encoding="UTF-8"?>
<suite name="Suite_C" lib="ccppphys" ver="3.0.0">

<group name="g1">
<subcycle loop="1">
<scheme>scheme_1</scheme>
<scheme>scheme_2</scheme>

</subcycle>
<subcycle loop="2">
<!-- block of schemes 3 and 4 is called twice -->
<scheme>scheme_3</scheme>
<scheme>scheme_4</scheme>

</subcycle>
</group>

</suite>

4.3.4 GFS v16beta Suite

Here is the SDF for the physics suite equivalent to the GFS v16beta in the UFS Atmosphere, which employs various
groups and subcycling:

<?xml version="1.0" encoding="UTF-8"?>

<suite name="FV3_GFS_v16beta" lib="ccppphys" ver="3">
<!-- <init></init> -->
<group name="fast_physics">
<subcycle loop="1">

<scheme>fv_sat_adj</scheme>
</subcycle>

</group>
<group name="time_vary">
<subcycle loop="1">

<scheme>GFS_time_vary_pre</scheme>
<scheme>GFS_rrtmg_setup</scheme>
<scheme>GFS_rad_time_vary</scheme>
<scheme>GFS_phys_time_vary</scheme>

</subcycle>
</group>
<group name="radiation">
<subcycle loop="1">

<scheme>GFS_suite_interstitial_rad_reset</scheme>
<scheme>GFS_rrtmg_pre</scheme>
<scheme>rrtmg_sw_pre</scheme>
<scheme>rrtmg_sw</scheme>
<scheme>rrtmg_sw_post</scheme>
<scheme>rrtmg_lw_pre</scheme>
<scheme>rrtmg_lw</scheme>
<scheme>rrtmg_lw_post</scheme>
<scheme>GFS_rrtmg_post</scheme>

</subcycle>
</group>
<group name="physics">

(continues on next page)

30 Chapter 4. Constructing Suites

CCPP Technical Documentation

(continued from previous page)

<subcycle loop="1">
<scheme>GFS_suite_interstitial_phys_reset</scheme>
<scheme>GFS_suite_stateout_reset</scheme>
<scheme>get_prs_fv3</scheme>
<scheme>GFS_suite_interstitial_1</scheme>
<scheme>GFS_surface_generic_pre</scheme>
<scheme>GFS_surface_composites_pre</scheme>
<scheme>dcyc2t3</scheme>
<scheme>GFS_surface_composites_inter</scheme>
<scheme>GFS_suite_interstitial_2</scheme>

</subcycle>
<!-- Surface iteration loop -->
<subcycle loop="2">

<scheme>sfc_diff</scheme>
<scheme>GFS_surface_loop_control_part1</scheme>
<scheme>sfc_nst_pre</scheme>
<scheme>sfc_nst</scheme>
<scheme>sfc_nst_post</scheme>
<scheme>lsm_noah</scheme>
<scheme>sfc_sice</scheme>
<scheme>GFS_surface_loop_control_part2</scheme>

</subcycle>
<!-- End of surface iteration loop -->
<subcycle loop="1">

<scheme>GFS_surface_composites_post</scheme>
<scheme>dcyc2t3_post</scheme>
<scheme>sfc_diag</scheme>
<scheme>sfc_diag_post</scheme>
<scheme>GFS_surface_generic_post</scheme>
<scheme>GFS_PBL_generic_pre</scheme>
<scheme>satmedmfvdifq</scheme>
<scheme>GFS_PBL_generic_post</scheme>
<scheme>GFS_GWD_generic_pre</scheme>
<scheme>cires_ugwp</scheme>
<scheme>cires_ugwp_post</scheme>
<scheme>GFS_GWD_generic_post</scheme>
<scheme>rayleigh_damp</scheme>
<scheme>GFS_suite_stateout_update</scheme>
<scheme>ozphys_2015</scheme>
<scheme>h2ophys</scheme>
<scheme>GFS_DCNV_generic_pre</scheme>
<scheme>get_phi_fv3</scheme>
<scheme>GFS_suite_interstitial_3</scheme>
<scheme>samfdeepcnv</scheme>
<scheme>GFS_DCNV_generic_post</scheme>
<scheme>GFS_SCNV_generic_pre</scheme>
<scheme>samfshalcnv</scheme>
<scheme>GFS_SCNV_generic_post</scheme>
<scheme>GFS_suite_interstitial_4</scheme>
<scheme>cnvc90</scheme>
<scheme>GFS_MP_generic_pre</scheme>
<scheme>gfdl_cloud_microphys</scheme>
<scheme>GFS_MP_generic_post</scheme>
<scheme>maximum_hourly_diagnostics</scheme>

</subcycle>
</group>
<group name="stochastics">

(continues on next page)

4.3. SDF Examples 31

CCPP Technical Documentation

(continued from previous page)

<subcycle loop="1">
<scheme>GFS_stochastics</scheme>

</subcycle>
</group>
<!-- <finalize></finalize> -->

</suite>

The suite name is FV3_GFS_v16beta. Five groups (fast_physics, time_vary, radiation,
physics, and stochastics) are used, because the physics needs to be called in different parts of the host
model. The detailed explanation of each primary physics scheme can be found in scientific documentation. A short
explanation of each scheme is below.

• fv_sat_adj: Saturation adjustment (for the UFS Atmosphere only)

• GFS_time_vary_pre: GFS physics suite time setup

• GFS_rrtmg_setup: Rapid Radiative Transfer Model for Global Circulation Models (RRTMG) setup

• GFS_rad_time_vary: GFS radiation time setup

• GFS_phys_time_vary: GFS physics suite time setup

• GFS_suite_interstitial_rad_reset: GFS suite interstitial radiation reset

• GFS_rrtmg_pre: Preprocessor for the GFS radiation schemes

• rrtmg_sw_pre: Preprocessor for the RRTMG shortwave radiation

• rrtmg_sw: RRTMG for shortwave radiation

• rrtmg_sw_post: Postprocessor for the RRTMG shortwave radiation

• rrtmg_lw_pre: Preprocessor for the RRTMG longwave radiation

• rrtmg_lw: RRTMG for longwave radiation

• rrtmg_lw_post: Postprocessor for the RRTMG longwave radiation

• GFS_rrtmg_post: Postprocessor for the GFS radiation schemes

• GFS_suite_interstitial_phys_reset: GFS suite interstitial physics reset

• GFS_suite_stateout_reset: GFS suite stateout reset

• get_prs_fv3: Adjustment of the geopotential height hydrostatically in a way consistent with FV3 discretiza-
tion

• GFS_suite_interstitial_1: GFS suite interstitial 1

• GFS_surface_generic_pre: Preprocessor for the surface schemes (land, sea ice)

• GFS_surface_composites_pre: Preprocessor for surafce composites

• dcyc2t3: Mapping of the radiative fluxes and heating rates from the coarser radiation timestep onto the
model’s more frequent time steps

• GFS_surface_composites_inter: Interstitial for the surface composites

• GFS_suite_interstitial_2: GFS suite interstitial 2

• sfc_diff: Calculation of the exchange coefficients in the GFS surface layer

• GFS_surface_loop_control_part1: GFS surface loop control part 1

• sfc_nst_pre: Preprocessor for the near-surface sea temperature

• sfc_nst: GFS Near-surface sea temperature

32 Chapter 4. Constructing Suites

CCPP Technical Documentation

• sfc_nst_post: Postprocessor for the near-surface temperature

• lsm_noah: Noah land surface scheme driver

• sfc_sice: Simple sea ice scheme

• GFS_surface_loop_control_part2: GFS surface loop control part 2

• GFS_surface_composites_post: Postprocess for surface composites

• dcyc2t3_post: Postprocessor for the mapping of the radiative fluxes and heating rates from the coarser
radiation timestep onto the model’s more frequent time steps

• sfc_diag: Land surface diagnostic calculation

• sfc_diag_post: Postprocessor for the land surface diagnostic calculation

• GFS_surface_generic_post: Postprocessor for the GFS surface process

• GFS_PBL_generic_pre: Preprocessor for all Planetary Boundary Layer (PBL) schemes (except MYNN)

• GFS_GWD_generic_pre: Preprocessor for the orographic gravity wave drag

• satmedmfvdifq: Scale-aware TKE-based moist eddy-diffusion mass-flux

• cires_ugwp: Unified gravity wave drag

• cires_ugwp_post: Postprocessor for the unified gravity wave drag

• GFS_GWD_generic_post: Postprocessor for the GFS gravity wave drag

• rayleigh_damp: Rayleigh damping

• GFS_suite_stateout_update: GFS suite stateout update

• ozphys_2015: Ozone photochemistry

• h2ophys: H2O physics for stratosphere and mesosphere

• GFS_DCNV_generic_pre: Preprocessor for the GFS deep convective schemes

• get_phi_fv3: Hydrostatic adjustment to the height in a way consistent with FV3 discretization

• GFS_suite_interstitial_3: GFS suite interstitial 3

• samfdeepcnv: Simplified Arakawa Schubert (SAS) Mass Flux deep convection

• GFS_DCNV_generic_post: Postprocessor for all deep convective schemes

• GFS_SCNV_generic_pre: Preprocessor for the GFS shallow convective schemes

• samfshalcnv: SAS mass flux shallow convection

• GFS_SCNV_generic_post: Postprocessor for the GFS shallow convective scheme

• GFS_suite_interstitial_4: GFS suite interstitial 4

• cnvc90: Convective cloud cover

• GFS_MP_generic_pre: Preprocessor for all GFS microphysics

• gfdl_cloud_microphys: GFDL cloud microphysics

• GFS_MP_generic_post: Postprocessor for GFS microphysics

• maximum_hourly_diagnostics: Computation of the maximum of the selected diagnostics

• GFS_stochastics: GFS stochastics scheme: Stochastic Kinetic Energy Backscatter (SKEB), Perturbed
boundary layer specific humidity (SHUM), or Stochastically Perturbed Physics Tendencies (SPPT)

4.3. SDF Examples 33

CCPP Technical Documentation

34 Chapter 4. Constructing Suites

CHAPTER

FIVE

SUITE AND GROUP CAPS

The connection between the host model and the physics schemes through the CCPP-Framework is realized with caps
on both sides as illustrated in Figure 1.1. The CCPP prebuild script discussed in Chapter 3 generates the caps that
connect the physics schemes to the CCPP-Framework. This chapter describes the suite and group caps, while the host
model caps are described in Chapter 6. These caps autogenerated by ccpp_prebuild.py reside in the directory
defined by the CAPS_DIR variable (see example in Listing 8.1).

5.1 Overview

When CCPP is built, the CCPP-Framework and physics are statically linked to the executable. This allows the best per-
formance and efficient memory use. This build requires metadata provided by the host model and variables requested
from the physics scheme. Only the variables required for the specified suites are kept, requiring one or more SDFs
(see left side of Figure 3.1) as arguments to the ccpp_prebuild.py script. The CCPP prebuild step performs the
tasks below.

• Check requested vs provided variables by standard_name.

• Check units, rank, type. Perform unit conversions if a mismatch of units is detected and the required conversion
has been implemented (see Section 5.2 for details).

• Filter unused schemes and variables.

• Create Fortran code for the static Application Programming Interface (API).

• Create caps for groups and suite(s).

• Populate makefiles with schemes and caps.

The prebuild step will produce the following files for the UFS Atmosphere:

• List of variables provided by host model and required by physics:

ccpp/framework/doc/DevelopersGuide/CCPP_VARIABLES_FV3.tex

• Makefile snippets that contain all caps to be compiled:

ccpp/physics/CCPP_CAPS.{cmake,mk}

• Makefile snippets that contain all schemes to be compiled:

ccpp/physics/CCPP_SCHEMES.{cmake,mk}

• List of CCPP types:

35

CCPP Technical Documentation

ccpp/physics/CCPP_TYPEDEFS.{cmake,mk}

• List of variables provided by host model:

ccpp/physics/CCPP_VARIABLES_FV3.html

• One cap per physics group (fast_physics, physics, radiation, time_vary, stochastic, . . .) for each suite:

ccpp/physics/ccpp_{suite_name}_{group_name}_cap.F90

• Cap for each suite:

ccpp/physics/ccpp_{suite_name}_cap.F90

• Autogenerated API (aka CCPP-Framework).

FV3/gfsphysics/CCPP_layer/ccpp_static_api.F90

ccpp_static_api.F90 is an interface, which contains subroutines ccpp_physics_init,
ccpp_physics_run and ccpp_physics_finalize. Each subroutine uses a suite_name and an optional
argument, group_name, to call the groups of a specified suite (e.g. fast_physics, physics, time_vary,
radiation, stochastic, etc.), or to call the entire suite. For example, ccpp_static_api.F90 would
contain module ccpp_static_api with subroutines ccpp_physics_{init, run, finalize}. The
subroutine ccpp_physics_init from the autogenerated code using suites FV3_GFS_v15 and FV3_CPT_v0 is
shown in Listing 5.2.

subroutine ccpp_physics_init(cdata, suite_name, group_name, ierr)
use ccpp_types, only : ccpp_t
implicit none
type(ccpp_t), intent(inout) :: cdata
character(len=*), intent(in) :: suite_name
character(len=*), optional, intent(in) :: group_name
integer, intent(out) :: ierr
ierr = 0
if (trim(suite_name)=="FV3_GFS_v15") then
if (present(group_name)) then

if (trim(group_name)=="fast_physics") then
ierr = FV3_GFS_v15_fast_physics_init_cap(cdata=cdata, CCPP_interstitial=CCPP_

→˓interstitial)
else if (trim(group_name)=="time_vary") then

ierr = FV3_GFS_v15_time_vary_init_cap(GFS_Interstitial=GFS_Interstitial, &
cdata=cdata,GFS_Data=GFS_Data, GFS_Control=GFS_Control)

else if (trim(group_name)=="radiation") then
ierr = FV3_GFS_v15_radiation_init_cap()

else if (trim(group_name)=="physics") then
ierr = FV3_GFS_v15_physics_init_cap(cdata=cdata, GFS_Control=GFS_Control)

else if (trim(group_name)=="stochastics") then
ierr = FV3_GFS_v15_stochastics_init_cap()

else
write(cdata%errmsg, '(*(a))') "Group " // trim(group_name) // " not found"
ierr = 1

end if
else

ierr = FV3_GFS_v15_init_cap(GFS_Interstitial=GFS_Interstitial, cdata=cdata,GFS_
→˓Control=GFS_Control, &

GFS_Data=GFS_Data, CCPP_interstitial=CCPP_interstitial)
end if

(continues on next page)

36 Chapter 5. Suite and Group Caps

CCPP Technical Documentation

(continued from previous page)

else if (trim(suite_name)=="FV3_CPT_v0") then
if (present(group_name)) then

if (trim(group_name)=="time_vary") then
ierr = FV3_CPT_v0_time_vary_init_cap(GFS_Interstitial=GFS_Interstitial, &

cdata=cdata,GFS_Data=GFS_Data, GFS_Control=GFS_Control)
else if (trim(group_name)=="radiation") then
ierr = FV3_CPT_v0_radiation_init_cap()

else if (trim(group_name)=="physics") then
ierr = FV3_CPT_v0_physics_init_cap(con_hfus=con_hfus, &

GFS_Control=GFS_Control,con_hvap=con_hvap, &
con_rd=con_rd,con_rv=con_rv,con_g=con_g, &
con_ttp=con_ttp,con_cp=con_cp,cdata=cdata)

else if (trim(group_name)=="stochastics") then
ierr = FV3_CPT_v0_stochastics_init_cap()

else
write(cdata%errmsg, '(*(a))') "Group " // trim(group_name) // " not found"
ierr = 1

end if
else

ierr = FV3_CPT_v0_init_cap(con_g=con_g, GFS_Data=GFS_Data,GFS_Control=GFS_
→˓Control, &

con_hvap=con_hvap,GFS_Interstitial=GFS_Interstitial, con_rd=con_rd,con_
→˓rv=con_rv, &

con_hfus=con_hfus, con_ttp=con_ttp,con_cp=con_cp,cdata=cdata)
end if

else
write(cdata%errmsg,'(*(a))'), 'Invalid suite ' // trim(suite_name)
ierr = 1

end if
cdata%errflg = ierr

end subroutine ccpp_physics_init

Listing 5.2: Code sample of subroutine ccpp_physics_init contained in the autogenerated file
ccpp_static_api.F90 for the multi-suite build. This cap was generated using suites FV3_GFS_v15 and
FV3_CPT_v0. Examples of the highlighted functions are shown below in Listing 5.3 and Listing 5.4.

Note that if group_name is set, specified groups (i.e. FV3_GFS_v15_physics_init_cap) are called for the
specified suite_name. These functions are defined in ccpp_{suite_name}_{group_name}_cap.F90, in
this case ccpp_FV3_GFS_v15_physics_cap.F90. For example:

function FV3_GFS_v15_physics_init_cap(cdata,GFS_Control)&
result(ierr)

use ccpp_types, only: ccpp_t
use GFS_typedefs, only: GFS_control_type
implicit none
integer :: ierr
type(ccpp_t), intent(inout) :: cdata
type(GFS_control_type), intent(in) :: GFS_Control
ierr = 0
if (initialized) return
call lsm_noah_init(me=GFS_Control%me,isot=GFS_Control%isot,&

ivegsrc=GFS_Control%ivegsrc,nlunit=GFS_Control%nlunit, &
errmsg=cdata%errmsg,errflg=cdata%errflg)

if (cdata%errflg/=0) then
write(cdata%errmsg,'(a)') "An error occured in lsm_noah_init"
ierr=cdata%errflg
return

(continues on next page)

5.1. Overview 37

CCPP Technical Documentation

(continued from previous page)

end if
call gfdl_cloud_microphys_init(me=GFS_Control%me, &

master=GFS_Control%master,nlunit=GFS_Control%nlunit, &
input_nml_file=GFS_Control%input_nml_file, &
logunit=GFS_Control%logunit,fn_nml=GFS_Control%fn_nml, &
imp_physics=GFS_Control%imp_physics, &
imp_physics_gfdl=GFS_Control%imp_physics_gfdl, &
do_shoc=GFS_Control%do_shoc, &
errmsg=cdata%errmsg,errflg=cdata%errflg)

if (cdata%errflg/=0) then
write(cdata%errmsg,'(a)') "An error occured in &

gfdl_cloud_microphys_init"
ierr=cdata%errflg
return

end if
initialized = .true.

end function FV3_GFS_v15_physics_init_cap

Listing 5.3: The FV3_GFS_v15_physics_init_cap contained in the autogenerated file
ccpp_FV3_GFS_v15_physics_cap.F90 showing calls to the lsm_noah_init , and
gfdl_cloud_microphys_init subroutines for the build for suite ‘FV3_GFS_v15’ and group ‘physics’.

If the group_name is not specified for a specified suite_name, the suite is called from the autogenerated
ccpp_static_api.F90, which calls the init, run and finalize routines for each group. Listing 5.4 is
an example of FV3_GFS_v15_init_cap.

function FV3_GFS_v15_init_cap(GFS_Interstitial, &
cdata,GFS_Control,GFS_Data,CCPP_interstitial) result(ierr)
use GFS_typedefs, only: GFS_interstitial_type
use ccpp_types, only: ccpp_t
use GFS_typedefs, only: GFS_control_type
use GFS_typedefs, only: GFS_data_type
use CCPP_typedefs, only: CCPP_interstitial_type

implicit none

integer :: ierr
type(GFS_interstitial_type), intent(inout) :: GFS_Interstitial(:)
type(ccpp_t), intent(inout) :: cdata
type(GFS_control_type), intent(inout) :: GFS_Control
type(GFS_data_type), intent(inout) :: GFS_Data(:)
type(CCPP_interstitial_type), intent(in) :: CCPP_interstitial

ierr = 0
ierr = FV3_GFS_v15_fast_physics_init_cap(cdata=cdata, CCPP_interstitial=CCPP_

→˓interstitial)
if (ierr/=0) return

ierr = FV3_GFS_v15_time_vary_init_cap (GFS_Interstitial=GFS_Interstitial,
→˓cdata=cdata, &

GFS_Data=GFS_Data,GFS_Control=GFS_Control)
if (ierr/=0) return

ierr = FV3_GFS_v15_radiation_init_cap()
if (ierr/=0) return
ierr = FV3_GFS_v15_physics_init_cap(cdata=cdata, &

GFS_Control=GFS_Control)
(continues on next page)

38 Chapter 5. Suite and Group Caps

CCPP Technical Documentation

(continued from previous page)

if (ierr/=0) return

ierr = FV3_GFS_v15_stochastics_init_cap()
if (ierr/=0) return

end function FV3_GFS_v15_init_cap

Listing 5.4: Condensed version of the FV3_GFS_v15_init_cap function contained in
the autogenerated file ccpp_FV3_GFS_v15_cap.F90 showing calls to the group caps
FV3_GFS_v15_fast_physics_init_cap, FV3_GFS_v15_time_vary_init_cap , etc. for the
build where a group name is not specified.

5.2 Automatic unit conversions

The CCPP framework is capable of performing automatic unit conversions if a mismatch of units between the host
model and a physics scheme is detected, provided that the required unit conversion has been implemented.

If a mismatch of units is detected and an automatic unit conversion can be performed, the CCPP prebuild script will
document this with a log message as in the following example:

INFO: Comparing metadata for requested and provided variables ...
INFO: Automatic unit conversion from m to um for effective_radius_of_stratiform_cloud_
→˓ice_particle_in_um after returning from MODULE_mp_thompson SCHEME_mp_thompson
→˓SUBROUTINE_mp_thompson_run
INFO: Automatic unit conversion from m to um for effective_radius_of_stratiform_cloud_
→˓liquid_water_particle_in_um after returning from MODULE_mp_thompson SCHEME_mp_
→˓thompson SUBROUTINE_mp_thompson_run
INFO: Automatic unit conversion from m to um for effective_radius_of_stratiform_cloud_
→˓snow_particle_in_um after returning from MODULE_mp_thompson SCHEME_mp_thompson
→˓SUBROUTINE_mp_thompson_run
INFO: Generating schemes makefile/cmakefile snippet ...

The CCPP framework is performing only the minimum unit conversions necessary, depending on the intent infor-
mation of the variable in the parameterization’s metadata table. In the above example, the cloud effective radii
are intent(out) variables, which means that no unit conversion is required before entering the subroutine
mp_thompson_run. Below are examples for auto-generated code performing automatic unit conversions from
m to um or back, depending on the intent of the variable. The conversions are performed in the individual physics
scheme caps for the dynamic build, or the group caps for the build.

! var1 is intent(in)
call mp_thompson_run(...,recloud=1.0E-6_kind_phys*re_cloud,...,errmsg=cdata

→˓%errmsg,errflg=cdata%errflg)
ierr=cdata%errflg

! var1 is intent(inout)
allocate(tmpvar1, source=re_cloud)
tmpvar1 = 1.0E-6_kind_phys*re_cloud
call mp_thompson_run(...,re_cloud=tmpvar1,...,errmsg=cdata%errmsg,errflg=cdata

→˓%errflg)
ierr=cdata%errflg
re_cloud = 1.0E+6_kind_phys*tmpvar1
deallocate(tmpvar1)

! var1 is intent(out)
allocate(tmpvar1, source=re_cloud)

(continues on next page)

5.2. Automatic unit conversions 39

CCPP Technical Documentation

(continued from previous page)

call mp_thompson_run(...,re_cloud=tmpvar1,...,errmsg=cdata%errmsg,errflg=cdata
→˓%errflg)

ierr=cdata%errflg
re_cloud = 1.0E+6_kind_phys*tmpvar1
deallocate(tmpvar1)

If a required unit conversion has not been implemented the CCPP prebuild script will generate an error message as
follows:

INFO: Comparing metadata for requested and provided variables ...
ERROR: Error, automatic unit conversion from m to pc for effective_radius_of_
→˓stratiform_cloud_ice_particle_in_um in MODULE_mp_thompson SCHEME_mp_thompson
→˓SUBROUTINE_mp_thompson_run not implemented

All automatic unit conversions are implemented in ccpp/framework/scripts/conversion_tools/
unit_conversion.py, new unit conversions can be added to this file by following the existing examples.

40 Chapter 5. Suite and Group Caps

CHAPTER

SIX

HOST SIDE CODING

This chapter describes the connection of a host model with the pool of CCPP-Physics schemes through the CCPP-
Framework.

In several places, references are made to an Interoperable Physics Driver (IPD). The IPD was originally developed
by EMC and later expanded by NOAA GFDL with the goal of connecting GFS physics to various models. A top
motivation for its development was the dycore test that led to the selection of FV3 as the dycore for the UFS. Designed
in a fundamentally different way than the CCPP, the IPD will be phased out in the near future in favor of the CCPP
as a single way to interface with physics in the UFS. To enable a smooth transition, several of the CCPP components
must interact with the IPD and, as such, parts of the CCPP code in the UFS currently carry the tag “IPD”.

6.1 Variable Requirements on the Host Model Side

All variables required to communicate between the host model and the physics, as well as to communicate between
physics schemes, need to be allocated by the host model. An exception is variables errflg, errmsg, loop_cnt,
blk_no, and thrd_no, which are allocated by the CCPP-Framework, as explained in Section 6.4.1. A list of all
variables required for the current pool of physics can be found in ccpp/framework/doc/DevelopersGuide/
CCPP_VARIABLES_XYZ.pdf (XYZ: SCM, FV3).

At present, only two types of variable definitions are supported by the CCPP-Framework:

• Standard Fortran variables (character, integer, logical, real) defined in a module or in the main program. For
character variables, a fixed length is required. All others can have a kind attribute of a kind type defined by the
host model.

• Derived data types (DDTs) defined in a module or the main program. While the use of DDTs as arguments
to physics schemes in general is discouraged (see Section 2.2), it is perfectly acceptable for the host model to
define the variables requested by physics schemes as components of DDTs and pass these components to CCPP
by using the correct local_name (e.g., myddt%thecomponentIwant; see Section 6.2.)

6.2 Metadata for Variable in the Host Model

To establish the link between host model variables and physics scheme variables, the host model must provide metadata
information similar to those presented in Section 2.2. The host model can have multiple metadata files (.meta), each
with the required [ccpp-table-properties] section and the related [ccpp-arg-table] sections. The
host model Fortran files contain three-line snippets to indicate the location for insertion of the metadata information
contained in the corresponding section in the .meta file.

!!> \section arg_table_example_vardefs
!! \htmlinclude example_vardefs.html
!!

41

CCPP Technical Documentation

For each variable required by the pool of CCPP-Physics schemes, one and only one entry must exist on the host
model side. The connection between a variable in the host model and in the physics scheme is made through its
standard_name.

The following requirements must be met when defining metadata for variables in the host model (see also Listing 6.1
and Listing 6.2 for examples of host model metadata).

• The standard_name must match that of the target variable in the physics scheme.

• The type, kind, shape and size of the variable (as defined in the host model Fortran code) must match that of the
target variable.

• The attributes units, rank, type and kind in the host model metadata must match those in the physics
scheme metadata.

• The attribute active is used to allocate variables under certain conditions. It must be written as a Fortran ex-
pression that equates to .true. or .false., using the CCPP standard names of variables. active attributes
for all variables are .true. by default. See Section 6.2.1 for details.

• The attributes optional and intent must be set to F and none, respectively.

• The local_name of the variable must be set to the name the host model cap uses to refer to the variable.

• The metadata section that exposes a DDT to the CCPP (as opposed to the section that describes the components
of a DDT) must be in the same module where the memory for the DDT is allocated. If the DDT is a module
variable, then it must be exposed via the module’s metadata section, which must have the same name as the
module.

• Metadata sections describing module variables must be placed inside the module.

• Metadata sections describing components of DDTs must be placed immediately before the type definition and
have the same name as the DDT.

module example_vardefs

implicit none

!!> \section arg_table_example_vardefs
!! \htmlinclude example_vardefs.html
!!

integer, parameter :: r15 = selected_real_kind(15)
integer :: ex_int
real(kind=8), dimension(:,:) :: ex_real1
character(len=64) :: errmsg
logical :: errflg

!!> \section arg_table_example_ddt
!! \htmlinclude example_ddt.html
!!

type ex_ddt
logical :: l
real, dimension(:,:) :: r

end type ex_ddt

type(ex_ddt) :: ext

end module example_vardefs

42 Chapter 6. Host Side Coding

CCPP Technical Documentation

Listing 6.1: Example host model file with reference to metadata. In this example, both the definition and the declaration
(memory allocation) of a DDT ext (of type ex_ddt) are in the same module.

##
[ccpp-table-properties]

name = arg_table_example_vardefs
type = module

[ccpp-arg-table]
name = arg_table_example_vardefs
type = module

[ex_int]
standard_name = example_int
long_name = ex. int
units = none
dimensions = ()
type = integer
kind =

[ex_real]
standard_name = example_real
long_name = ex. real
units = m
dimensions = (horizontal_dimension,vertical_dimension)
type = real
kind = kind=8

[ex_ddt]
standard_name = example_ddt
long_name = ex. ddt
units = DDT
dimensions = (horizontal_dimension,vertical_dimension)
type = ex_ddt
kind =

[ext]
standard_name = example_ddt_instance
long_name = ex. ddt inst
units = DDT
dimensions = (horizontal_dimension,vertical_dimension)
type = ex_ddt
kind =

[errmsg]
standard_name = ccpp_error_message
long_name = error message for error handling in CCPP
units = none
dimensions = ()
type = character
kind = len=64

[errflg]
standard_name = ccpp_error_flag
long_name = error flag for error handling in CCPP
units = flag
dimensions = ()
type = integer

##
[ccpp-table-properties]

name = arg_table_example_ddt
type = ddt

(continues on next page)

6.2. Metadata for Variable in the Host Model 43

CCPP Technical Documentation

(continued from previous page)

[ccpp-arg-table]
name = arg_table_example_ddt
type = ddt

[ext%1]
standard_name = example_flag
long_name = ex. flag
units = flag
dimensions =
type = logical
kind =

[ext%r]
standard_name = example_real3
long_name = ex. real
units = kg
dimensions = (horizontal_dimension,vertical_dimension)
type = real
kind = r15

[ext%r(;,1)]
standard_name = example_slice
long_name = ex. slice
units = kg
dimensions = (horizontal_dimension,vertical_dimension)
type = real
kind = r15

[nwfa2d]
standard_name = tendency_of_water_friendly_aerosols_at_surface
long_name = instantaneous water-friendly sfc aerosol source
units = kg-1 s-1
dimensions = (horizontal_dimension)
type = real
kind = kind_phys
active = (flag_for_microphysics_scheme == flag_for_thompson_microphysics_scheme .

→˓and. flag_for_aerosol_physics)
[qgrs(:,:,index_for_water_friendly_aerosols)]

standard_name = water_friendly_aerosol_number_concentration
long_name = number concentration of water-friendly aerosols
units = kg-1
dimensions = (horizontal_dimension,vertical_dimension)
active = (index_for_water_friendly_aerosols > 0)
type = real
kind = kind_phys

Listing 6.2: Example host model metadata file (.meta).

6.2.1 Active Attribute

The CCPP must be able to detect when arrays need to be allocated, and when certain tracers must be present in order to
perform operations or tests in the auto-generated caps (e.g. unit conversions, blocked data structure copies, etc.). This
is accomplished with the attribute active in the metadata for the host model variables (GFS_typedefs.meta for
the UFS Atmosphere or the SCM).

Several arrays in the host model (e.g., GFS_typedefs.F90 in the UFS Atmosphere or the SCM) are allocated
based on certain conditions, for example:

44 Chapter 6. Host Side Coding

CCPP Technical Documentation

!--- needed for Thompson's aerosol option
if(Model%imp_physics == Model%imp_physics_thompson .and. Model%ltaerosol) then

allocate (Coupling%nwfa2d (IM))
allocate (Coupling%nifa2d (IM))
Coupling%nwfa2d = clear_val
Coupling%nifa2d = clear_val

endif

Other examples are the elements in the tracer array, where their presence depends on the corresponding index being
larger than zero. For example:

integer :: ntwa !< tracer index for water friendly aerosol
...
Model%ntwa = get_tracer_index(Model%tracer_names, 'liq_aero', ...)
...
if (Model%ntwa>0) then

! do something with qgrs(:,:,Model%ntwa)
end if

The active attribute is a conditional statement that, if true, will allow the corresponding variable to be allocated.
It must be written as a Fortran expression that equates to .true. or .false., using the CCPP standard names of
variables. Active attributes for all variables are .true. by default.

If a developer adds a new variable that is only allocated under certain conditions, or changes the conditions under which
an existing variable is allocated, a corresponding change must be made in the metadata for the host model variables
(GFS_typedefs.meta for the UFS Atmosphere or the SCM). See variables nwfa2d and qgrs in Listing 6.2 for
an example.

6.3 CCPP Variables in the SCM and UFS Atmosphere Host Models

While the use of standard Fortran variables is preferred, in the current implementation of the CCPP in the UFS At-
mosphere and in the SCM almost all data is contained in DDTs for organizational purposes. In the case of the SCM,
DDTs are defined in gmtb_scm_type_defs.f90 and GFS_typedefs.F90, and in the case of the UFS Atmo-
sphere, they are defined in both GFS_typedefs.F90 and CCPP_typedefs.F90. The current implementation
of the CCPP in both host models uses the following set of DDTs:

• GFS_init_type variables to allow proper initialization of GFS physics

• GFS_statein_type prognostic state data provided by dycore to physics

• GFS_stateout_type prognostic state after physical parameterizations

• GFS_sfcprop_type surface properties read in and/or updated by climatology, obs, physics

• GFS_coupling_type fields from/to coupling with other components, e.g., land/ice/ocean

• GFS_control_type control parameters input from a namelist and/or derived from others

• GFS_grid_type grid data needed for interpolations and length-scale calculations

• GFS_tbd_type data not yet assigned to a defined container

• GFS_cldprop_type cloud properties and tendencies needed by radiation from physics

• GFS_radtend_type radiation tendencies needed by physics

• GFS_diag_type fields targeted for diagnostic output to disk

• GFS_interstitial_type fields used to communicate variables among schemes in the slow physics group
required to replace interstitial code in GFS_{physics, radiation}_driver.F90 in CCPP

6.3. CCPP Variables in the SCM and UFS Atmosphere Host Models 45

CCPP Technical Documentation

• GFS_data_type combined type of all of the above except GFS_control_type and
GFS_interstitial_type

• CCPP_interstitial_type fields used to communicate variables among schemes in the fast physics group

The DDT descriptions provide an idea of what physics variables go into which data type. GFS_diag_type
can contain variables that accumulate over a certain amount of time and are then zeroed out. Variables that
require persistence from one timestep to another should not be included in the GFS_diag_type nor the
GFS_interstitial_type DDTs. Similarly, variables that need to be shared between groups cannot be included
in the GFS_interstitial_type DDT. Although this memory management is somewhat arbitrary, new variables
provided by the host model or derived in an interstitial scheme should be put in a DDT with other similar variables.

Each DDT contains a create method that allocates the data defined using the metadata. For example, the
GFS_stateout_type contains:

type GFS_stateout_type

!-- Out (physics only)
real (kind=kind_phys), pointer :: gu0 (:,:) => null() !< updated zonal wind
real (kind=kind_phys), pointer :: gv0 (:,:) => null() !< updated meridional wind
real (kind=kind_phys), pointer :: gt0 (:,:) => null() !< updated temperature
real (kind=kind_phys), pointer :: gq0 (:,:,:) => null() !< updated tracers

contains
procedure :: create => stateout_create !< allocate array data

end type GFS_stateout_type

In this example, gu0, gv0, gt0, and gq0 are defined in the host-side metadata section, and when the subroutine
stateout_create is called, these arrays are allocated and initialized to zero. With the CCPP, it is possible to not
only refer to components of DDTs, but also to slices of arrays with provided metadata as long as these are contiguous
in memory. An example of an array slice from the GFS_stateout_type looks like:

##
[ccpp-table-properties]

name = GFS_stateout_type
type = ddt
dependencies =

[ccpp-arg-table]
name = GFS_stateout_type
type = ddt

[gq0(:,:,index_for_snow_water)]
standard_name = snow_water_mixing_ratio_updated_by_physics
long_name = moist (dry+vapor, no condensates) mixing ratio of snow water updated

→˓by physics
units = kg kg-1
dimensions = (horizontal_dimension,vertical_dimension)
type = real
kind = kind_phys

Array slices can be used by physics schemes that only require certain values from an array.

46 Chapter 6. Host Side Coding

CCPP Technical Documentation

6.4 CCPP API

The CCPP Application Programming Interface (API) is comprised of a set of clearly defined methods used
to communicate variables between the host model and the physics and to run the physics. The bulk of the
CCPP API is located in the CCPP-Framework, and is described in file ccpp_static_api.F90. Sub-
routines ccpp_physics_init, ccpp_physics_finalize, and ccpp_physics_run (described below)
are contained in ccpp_static_api.F90. ccpp_static_api.F90 is auto-generated when the script
ccpp_prebuild.py is run for the build.

6.4.1 Data Structure to Transfer Variables between Dynamics and Physics

The cdata structure is used for holding five variables that must always be available to the physics schemes. These
variables are listed in a metadata table in ccpp/framework/src/ccpp_types.meta (Listing 6.3).

• Error flag for handling in CCPP (errmsg).

• Error message associated with the error flag (errflg).

• Loop counter for subcycling loops (loop_cnt).

• Number of block for explicit data blocking in CCPP (blk_no).

• Number of thread for threading in CCPP (thrd_no).

Listing 6.3: Mandatory variables provided by the CCPP-Framework from ccpp/framework/src/
ccpp_types.meta . These variables must not be defined by the host model.

Two of the variables are mandatory and must be passed to every physics scheme: errmsg and errflg. The variables
loop_cnt, blk_no, and thrd_no can be passed to the schemes if required, but are not mandatory. The cdata
structure is only used to hold these five variables, since the host model variables are directly passed to the physics
without the need for an intermediate data structure.

Note that cdata is not restricted to being a scalar but can be a multidimensional array, depending on the needs of
the host model. For example, a model that uses a one-dimensional array of blocks for better cache-reuse may require
cdata to be a one-dimensional array of the same size. Another example of a multi-dimensional array of cdata is in
the SCM, which uses a one-dimensional cdata array for N independent columns.

Due to a restriction in the Fortran language, there are no standard pointers that are generic pointers, such as the C
language allows. The CCPP system therefore has an underlying set of pointers in the C language that are used to point
to the original data within the host application cap. The user does not see this C data structure, but deals only with the
public face of the Fortran cdata DDT. The type ccpp_t is defined in ccpp/framework/src/ccpp_types.
meta and declared in ccpp/framework/src/ccpp_types.F90.

6.4.2 Initializing and Finalizing the CCPP

At the beginning of each run, the cdata structure needs to be set up. Similarly, at the end of each run, it needs to
be terminated. This is done with subroutines ccpp_init and ccpp_finalize. These subroutines should not be
confused with ccpp_physics_init and ccpp_physics_finalize, which were described in Chapter 5.

Note that optional arguments are denoted with square brackets.

6.4. CCPP API 47

CCPP Technical Documentation

Suite Initialization Subroutine

The suite initialization subroutine, ccpp_init, takes three mandatory and two optional arguments. The mandatory
arguments are the name of the suite (of type character), the name of the cdata variable that must be allocated at
this point, and an integer used for the error status. Note that the suite initialization routine ccpp_init parses the
SDF corresponding to the given suite name and initializes the state of the suite and its schemes. This process must be
repeated for every element of a multi-dimensional cdata. For performance reasons, it is possible to avoid repeated
reads of the SDF and to have a single state of the suite shared between the elements of cdata. To do so, specify an
optional argument variable called cdata_target = X in the call to ccpp_init, where X refers to the instance
of cdata that has already been initialized.

For a given suite name XYZ, the name of the suite definition file is inferred as suite_XYZ.xml, and the file is
expected to be present in the current run directory. It is possible to specify the optional argument is_filename=.
true. to ccpp_init, which will treat the suite name as an actual file name (with or without the path to it).

Typical calls to ccpp_init are below, where ccpp_suite is the name of the suite, and ccpp_sdf_filepath
the actual SDF filename, with or without a path to it.

call ccpp_init(trim(ccpp_suite), cdata, ierr)
call ccpp_init(trim(ccpp_suite), cdata2, ierr, [cdata_target=cdata])
call ccpp_init(trim(ccpp_sdf_filepath), cdata, ierr, [is_filename=.true.])

Suite Finalization Subroutine

The suite finalization subroutine, ccpp_finalize, takes two arguments, the name of the cdata variable that must
be de-allocated at this point, and an integer used for the error status. A typical call to ccpp_finalize is below:

call ccpp_finalize(cdata, ierr)

If a specific data instance was used in a call to ccpp_init, as in the above example in Section 6.4.2, then this data
instance must be finalized last:

call ccpp_finalize(cdata2, ierr)
call ccpp_finalize(cdata, ierr)

6.4.3 Running the Physics

The physics is invoked by calling subroutine ccpp_physics_run. This subroutine is part of the CCPP API and is
auto-generated. This subroutine is capable of executing the physics with varying granularity, that is, a single group,
or an entire suite can be run with a single subroutine call. Typical calls to ccpp_physics_run are below,where
suite_name is mandatory and group_name is optional:

call ccpp_physics_run(cdata, suite_name, [group_name], ierr=ierr)

48 Chapter 6. Host Side Coding

CCPP Technical Documentation

6.4.4 Initializing and Finalizing the Physics

Many (but not all) physical parameterizations need to be initialized, which includes functions such as reading lookup
tables, reading input datasets, computing derived quantities, broadcasting information to all MPI ranks, etc. Initializa-
tion procedures are typically done for the entire domain, that is, they are not subdivided by blocks. Similarly, many
(but not all) parameterizations need to be finalized, which includes functions such as deallocating variables, resetting
flags from initialized to non-initiaIized, etc. Initialization and finalization functions are each performed once per run,
before the first call to the physics and after the last call to the physics, respectively.

The initialization and finalization can be invoked for a single group, or for the entire suite. In both cases, subroutines
ccpp_physics_init and ccpp_physics_finalize are used and the arguments passed to those subroutines
determine the type of initialization.

These subroutines should not be confused with ccpp_init and ccpp_finalize, which were explained previ-
ously.

Subroutine ccpp_physics_init

This subroutine is part of the CCPP API and is auto-generated. It cannot contain thread-dependent information but
can have block-dependent information. A typical call to ccpp_physics_init is:

call ccpp_physics_init(cdata, suite_name, [group_name], ierr=ierr)

Subroutine ccpp_physics_finalize

This subroutine is part of the CCPP API and is auto-generated. A typical call to ccpp_physics_finalize is:

call ccpp_physics_finalize(cdata, suite_name, [group_name], ierr=ierr)

6.5 Host Caps

The purpose of the host model cap is to abstract away the communication between the host model and the CCPP-
Physics schemes. While CCPP calls can be placed directly inside the host model code (as is done for the relatively
simple SCM), it is recommended to separate the cap in its own module for clarity and simplicity (as is done for the
UFS Atmosphere). While the details of implementation will be specific to each host model, the host model cap is
responsible for the following general functions:

• Allocating memory for variables needed by physics

– All variables needed to communicate between the host model and the physics, and all variables needed
to communicate among physics schemes, need to be allocated by the host model. The latter, for example
for interstitial variables used exclusively for communication between the physics schemes, are typically
allocated in the cap.

• Allocating the cdata structure(s)

• Calling the suite initialization subroutine

– The suite must be initialized using ccpp_init.

• Populating the cdata structure(s)

– The autogenerated caps for the physics (groups and suite caps) are automatically given memory access to
the host model variables and they can be used directly, without the need for a data structure containing
pointers to the actual variables (which is what cdata is).

6.5. Host Caps 49

CCPP Technical Documentation

• Providing interfaces to call the CCPP

– The cap must provide functions or subroutines that can be called at the appropriate places in the
host model time integration loop and that internally call ccpp_init, ccpp_physics_init,
ccpp_physics_run, ccpp_physics_finalize and ccpp_finalize, and handle any errors
returned See Listing 6.4.

module example_ccpp_host_cap

use ccpp_api, only: ccpp_t, ccpp_init, ccpp_finalize
use ccpp_static_api, only: ccpp_physics_init, ccpp_physics_run, &

ccpp_physics_finalize

implicit none
! CCPP data structure
type(ccpp_t), save, target :: cdata
public :: physics_init, physics_run, physics_finalize

contains

subroutine physics_init(ccpp_suite_name)
character(len=*), intent(in) :: ccpp_suite_name
integer :: ierr
ierr = 0

! Initialize the CCPP framework, parse SDF
call ccpp_init(trim(ccpp_suite_name), cdata, ierr=ierr)
if (ierr/=0) then
write(*,'(a)') "An error occurred in ccpp_init"
stop

end if

! Initialize CCPP physics (run all _init routines)
call ccpp_physics_init(cdata, suite_name=trim(ccpp_suite_name), &

ierr=ierr)
! error handling as above

end subroutine physics_init

subroutine physics_run(ccpp_suite_name, group)
! Optional argument group can be used to run a group of schemes &
! defined in the SDF. Otherwise, run entire suite.
character(len=*), intent(in) :: ccpp_suite_name
character(len=*), optional, intent(in) :: group

integer :: ierr
ierr = 0

if (present(group)) then
call ccpp_physics_run(cdata, suite_name=trim(ccpp_suite_name), &

group_name=group, ierr=ierr)
else

call ccpp_physics_run(cdata, suite_name=trim(ccpp_suite_name), &
ierr=ierr)

end if
! error handling as above

end subroutine physics_run

(continues on next page)

50 Chapter 6. Host Side Coding

CCPP Technical Documentation

(continued from previous page)

subroutine physics_finalize(ccpp_suite_name)
character(len=*), intent(in) :: ccpp_suite_name
integer :: ierr
ierr = 0

! Finalize CCPP physics (run all _finalize routines)
call ccpp_physics_finalize(cdata, suite_name=trim(ccpp_suite_name), &

ierr=ierr)
! error handling as above
call ccpp_finalize(cdata, ierr=ierr)
! error handling as above

end subroutine physics_finalize

end module example_ccpp_host_cap

Listing 6.4: Fortran template for a CCPP host model cap from ccpp/framework/doc/DevelopersGuide/
host_cap_template.F90.

The following sections describe two implementations of host model caps to serve as examples. For each of the
functions listed above, a description for how it is implemented in each host model is included.

6.5.1 SCM Host Cap

The cap functions for the SCM are mainly implemented in:

gmtb-scm/scm/src/gmtb_scm.F90

With smaller parts in:

gmtb-scm/scm/src/gmtb_scm_type_defs.f90

gmtb-scm/scm/src/gmtb_scm_setup.f90

gmtb-scm/scm/src/gmtb_scm_time_integration.f90

The host model cap is responsible for:

• Allocating memory for variables needed by physics

All variables and constants required by the physics have metadata provided on the host-side,
arg_table_physics_type and arg_table_gmtb_scm_physical_constants, which are imple-
mented in gmtb_scm_type_defs.f90 and gmtb_scm_physical_constants.f90. To mimic the
UFS Atmosphere and to hopefully reduce code maintenance, currently, the SCM uses GFS DDTs as sub-types
within the physics DDT.

In gmtb_scm_type_defs.f90, the physics DDT has a create type-bound procedure (see subroutine
physics_create and type physics_type), which allocates GFS sub-DDTs and other physics vari-
ables and initializes them with zeros. physics%create is called from gmtb_scm.F90 after the initial
SCM state has been set up.

• Allocating the cdata structure

The SCM uses a one-dimensional cdata array for N independent columns, i.e. in gmtb_scm.F90:

allocate(cdata(scm_state%n_cols))

• Calling the suite initialization subroutine

Within scm_state%n_cols loop in gmtb_scm.F90 after initial SCM state setup and before first timestep,
the suite initialization subroutine ccpp_init is called for each column with own instance of cdata, and

6.5. Host Caps 51

CCPP Technical Documentation

takes three arguments, the name of the runtime SDF, the name of the cdata variable that must be allocated at
this point, and ierr.

• Populating the cdata structure

Within the same scm_state%n_cols loop, but after the ccpp_init call, the cdata structure is filled in
with real initialized values:

• physics%Init_parm (GFS DDT for setting up suite) are filled in from scm_state%

• call GFS_suite_setup(): similar to GFS_initialize() in the UFS Atmosphere, is called
and includes:

• %init/%create calls for GFS DDTs

• initialization for other variables in physics DDT

• init calls for legacy non-ccpp schemes

• call physics%associate(): to associate pointers in physics DDT with targets in scm_state,
which contains variables that are modified by the SCM “dycore” (i.e. forcing).

This include file is auto-generated from ccpp/scripts/ccpp_prebuild.py, which
parses tables in gmtb_scm_type_defs.f90.

• Providing interfaces to call the CCPP

• Calling ccpp_physics_init()

Within the same scm_state%n_cols loop but after cdata is filled, the physics initializa-
tion routines (*_init()) associated with the physics suite, group, and/or schemes are called
at each column.

• Calling ccpp_physics_run()

At the first timestep, if the forward scheme is selected (i.e. scm_state%time_scheme
== 1), call do_time_step() to apply forcing and ccpp_physics_run() calls at each
column; if the leapfrog scheme is selected (i.e. scm_state%time_scheme == 2), call
ccpp_physics_run() directly at each column.

At a later time integration, call do_time_step() to apply forcing and
ccpp_physics_run() calls at each column. Since there is no need to execute any-
thing between physics groups in the SCM, the ccpp_physics_run call is only given cdata
and an error flag as arguments.

• Calling ccpp_physics_finalize() and ccpp_finalize()

ccpp_physics_finalize() and ccpp_finalize() are called after the time loop at
each column.

6.5.2 UFS Atmosphere Host Cap

This section describes how the host cap is implemented for the UFS Atmosphere build. For the build that uses CCPP:

#ifdef CCPP
#endif

• Allocating memory for variables needed by physics

• Allocating the cdata structures

52 Chapter 6. Host Side Coding

CCPP Technical Documentation

• For the current implementation of the UFS Atmosphere, which uses a subset of fast physics processes tightly
coupled to the dynamical core, three instances of cdata exist within the host model: cdata_tile to hold
data for the fast physics, cdata_domain to hold data needed for all UFS Atmosphere blocks for the slow
physics, and cdata_block, an array of cdata DDTs with dimensions of (number of blocks, number
of threads) to contain data for individual block/thread combinations for the slow physics. All are defined
as module-level variables in the CCPP_data module of CCPP_data.F90. The cdata_block array is
allocated (since the number of blocks and threads is unknown at compile-time) as part of the ‘init’ step of
the CCPP_step subroutine in CCPP_driver.F90. Note: Although the cdata containers are not used
to hold the pointers to the physics variables, they are still used to hold other CCPP-related information.

• Calling the suite initialization subroutine

• Corresponding to the three instances of cdata described above, the ccpp_init subroutine is
called within three different contexts, all originating from the atmos_model_init subroutine of
atmos_model.F90:

• For cdata_tile (used for the fast physics), the ccpp_init call is made from the
atmosphere_init subroutine of atmosphere.F90. Note: when fast physics is used, this
is the first call to ccpp_init, so it reads in the SDF and initializes the suite in addition to setting
up the fields for cdata_tile.

• For cdata_domain and cdata_block used in the rest of the physics, the ‘init’ step of the
CCPP_step subroutine in CCPP_driver.F90 is called. Within that subroutine, ccpp_init
is called once to set up cdata_domain and within a loop for every block/thread combination to
set up the components of the cdata_block array. Note: as mentioned in the CCPP API Section
6.4, when fast physics is used, the SDF has already been read and the suite is already setup, so
this step is skipped and the suite information is simply copied from what was already initialized
(cdata_tile) using the cdata_target optional argument.

• Providing interfaces to call the CCPP

• Calling ccpp_physics_init

• ccpp_physics_init is autogenerated and contained within ccpp_static_api.F90. As
mentioned in the CCPP API Section 6.4 , it can be called to initialize groups as defined in the SDFs
or the suite as a whole, depending on whether a group name is passed in as an optional argument.

• Calling ccpp_physics_run

• ccpp_physics_run is called from ccpp_static_api.F90 and contains autogenerated caps
for groups and the suite as a whole as defined in the SDFs.

• calling ccpp_physics_finalize and ccpp_finalize

• ccpp_physics_finalize is autogenerated and contained within ccpp_static_api.F90.
As mentioned in the CCPP API Section 6.4, it can be called to finalize groups as defined in the
current SDFs or the suite as a whole, depending on whether a group name is passed in as an optional
argument.

6.5. Host Caps 53

CCPP Technical Documentation

54 Chapter 6. Host Side Coding

CHAPTER

SEVEN

CCPP CODE MANAGEMENT

7.1 Organization of the Code

This chapter describes the organization of the code, provides instruction on the GitHub workflow and the code review
process, and outlines the release procedure. It is assumed that the reader is familiar with using basic GitHub features.
A GitHub account is necessary if a user would like to make and contribute code changes.

7.1.1 Authoritative Repositories

There are two authoritative repositories for the CCPP:

https://github.com/NCAR/ccpp-framework

https://github.com/NCAR/ccpp-physics

Users have read-only access to these repositories and as such cannot accidentally destroy any important (shared)
branches of these authoritative repositories. Both CCPP repositories are public (no GitHub account required) and may
be used directly to read or create forks. Write permission is generally restricted, however.

The following branches are recommended for CCPP developers:

Repository Branch name
https://github.com/NCAR/ccpp-physics master
https://github.com/NCAR/ccpp-framework master

7.1.2 Directory Structure of ccpp/framework

The following is the directory structure for the ccpp/framework (condensed version):

cmake # cmake files for building
doc # Documentation for design/implementation and developers

→˓guide
DevelopersGuide

images
img

schemes # Example ccpp_prebuild_config.py
check

scripts # Scripts for ccpp_prebuild.py, metadata parser, etc.
fortran_tools
parse_tools

src # CCPP framework source code

(continues on next page)

55

https://github.com/NCAR/ccpp-framework
https://github.com/NCAR/ccpp-physics
https://github.com/NCAR/ccpp-physics
https://github.com/NCAR/ccpp-framework

CCPP Technical Documentation

(continued from previous page)

tests # SDFs and code for testing
test

nemsfv3gfs # NEMSfv3gfs regression test scripts
tests # Development for framework upgrades

7.1.3 Directory Structure of ccpp/physics

The following is the directory structure for the ccpp/physics (condensed version):

physics # CCPP physics source code and metadata files
docs # Scientific documentation (doxygen)

img # Figures for doxygen
pdftxt # Text files for documentation

7.2 GitHub Workflow (setting up development repositories)

The CCPP development practices make use of the GitHub forking workflow. For users not familiar with this concept,
this website provides some background information and a tutorial.

7.2.1 Creating Forks

The GitHub forking workflow relies on forks (personal copies) of the shared repositories on GitHub. These forks need
to be created only once, and only for directories that users will contribute changes to. The following steps describe
how to create a fork for the example of the ccpp-physics submodule/repository:

Go to https://github.com/NCAR/ccpp-physics and make sure you are signed in as your GitHub user.

Select the “fork” button in the upper right corner.

• If you have already created a fork, this will take you to your fork.

• If you have not yet created a fork, this will create one for you.

Note that the repo name in the upper left (blue) will be either “NCAR” or “your GitHub name” which
tells you which fork you are looking at.

Note that personal forks are not required until a user wishes to make code contributions. The procedure for how to
check out the code laid out below can be followed without having created any forks beforehand.

7.2.2 Checking out the Code

Instructions are provided here for the ccpp-physics repository. Similar steps are required for the ccpp-frameworkx
repository. The process for checking out the CCPP is described in the following, assuming access via https rather
than ssh. We strongly recommend setting up passwordless access to GitHub (see https://help.github.com/categories/
authenticating-to-github).

Start with checking out the main repository from the NCAR GitHub

git clone https://github.com/NCAR/ccpp-physics
cd ccpp-physics
git remote rename origin upstream

56 Chapter 7. CCPP Code Management

https://github.com/NCAR/ccpp-physics
https://help.github.com/categories/authenticating-to-github
https://help.github.com/categories/authenticating-to-github

CCPP Technical Documentation

Checking out remote branches means that your local branches are in a detached state, since you cannot commit
directly to a remote branch. As long as you are not making any code modifications, this is not a problem. If during
your development work changes are made to the corresponding upstream branch, you can simply navigate to this
repository and check out the updated version:

git remote update
git checkout upstream/master
cd ..

However, if you are making code changes, you must create a local branch.

git checkout -b my_local_development_branch

Once you are ready to contribute the code to the upstream repository, you need to create a PR (see next section). In
order to do so, you first need to create your own fork of this repository (see previous section) and configure your fork
as an additional remote destination, which we typically label as origin. For example:

git remote add origin https://github.com/YOUR_GITHUB_USER/ccpp-physics
git remote update

Then, push your local branch to your fork:

git push origin my_local_development_branch

For each repository/submodule, you can check the configured remote destinations and all existing branches (remote
and local):

git remote -v show
git remote update
git branch -a

As opposed to branches without modifications described in step 3, changes to the upstream repository can be brought
into the local branch by pulling them down. For example (where a local branch is checked out):

cd ccpp-physics
git remote update
git pull upstream dtc/develop

7.3 Committing Changes to your Fork

Once you have your fork set up to begin code modifications, you should check that the cloned repositories upstream
and origin are set correctly:

git remote -v

This should point to your fork as origin and the repository you cloned as upstream:

origin https://github.com/YOUR_GITHUB_USER/ccpp-physics (fetch)
origin https://github.com/YOUR_GITHUB_USER/ccpp-physics (push)
upstream https://github.com/NCAR/ccpp-physics (fetch)
upstream https://github.com/NCAR/ccpp-physics (push)

Also check what branch you are working on:

7.3. Committing Changes to your Fork 57

CCPP Technical Documentation

git branch

This command will show what branch you have checked out on your fork:

* features/my_local_development_branch
dtc/develop
master

After making modifications and testing, you can commit the changes to your fork. First check what files have been
modified:

git status

This git command will provide some guidance on what files need to be added and what files are “untracked”. To add
new files or stage modified files to be committed:

git add filename1 filename2

At this point it is helpful to have a description of your changes to these files documented somewhere, since when you
commit the changes, you will be prompted for this information. To commit these changes to your local repository and
push them to the development branch on your fork:

git commit
git push origin features/my_local_development_branch

When this is done, you can check the status again:

git status

This should show that your working copy is up to date with what is in the repository:

On branch features/my_local_development_branch
Your branch is up to date with 'origin/features/my_local_development_branch'.
nothing to commit, working tree clean

At this point you can continue development or create a PR as discussed in the next section.

7.4 Contributing Code, Code Review Process

Once your development is mature, and the testing has been completed (see next section), you are ready to create a PR
using GitHub to propose your changes for review.

7.4.1 Creating a PR

Go to the github.com web interface, and navigate to your repository fork and branch. In most cases, this will be in the
ccpp-physics repository, hence the following example:

Navigate to: https://github.com/<yourusername>/ccpp-physics
Use the drop-down menu on the left-side to select a branch to view your development branch
Use the button just right of the branch menu, to start a “New Pull Request”
Fill in a short title (one line)
Fill in a detailed description, including reporting on any testing you did
Click on “Create pull request”

58 Chapter 7. CCPP Code Management

https://github.com

CCPP Technical Documentation

If your development also requires changes in other repositories, you must open PRs in those repositories as well. In
the PR message for each repository, please note the associate PRs submitted to other repositories.

Several people (aka CODEOWNERS) are automatically added to the list of reviewers on the right hand side. If others
should be reviewing the code, click on the “reviewers” item on the right hand side and enter their GitHub usernames

Once the PR has been approved, the change is merged to master by one of the code owners. If there are pending
conflicts, this means that the code is not up to date with the trunk. To resolve those, pull the target branch from
upstream as described above, solve the conflicts and push the changes to the branch on your fork (this also updates the
PR).

Note. GitHub offers a draft pull request feature that allows users to push their code to GitHub and create a draft PR.
Draft PRs cannot be merged and do not automatically initiate notifications to the CODEOWNERS, but allow users to
prepare the PR and flag it as “ready for review” once they feel comfortable with it.

7.4. Contributing Code, Code Review Process 59

CCPP Technical Documentation

60 Chapter 7. CCPP Code Management

CHAPTER

EIGHT

TECHNICAL ASPECTS OF THE CCPP PREBUILD

8.1 Prebuild Script Function

The CCPP prebuild script ccpp/framework/scripts/ccpp_prebuild.py is the central piece of code that
connects the host model with the CCPP-Physics schemes (see 3.1). This script must be run before compiling the
CCPP-Physics library and the host model cap. This may be done manually or as part of a host model build-time script.
In the case of the SCM, ccpp_prebuild.py must be run manually, as it not incorporated in that model’s build
system. In the case of ufs-weather-model, ccpp_prebuild.py can be run manually or automatically as a step in
the build system.

The CCPP prebuild script automates several tasks based on the information collected from the metadata on the host
model side and from the individual physics schemes (.meta files; see Figure 8.1):

• Compiles a list of variables required to run all schemes in the CCPP-Physics pool.

• Compiles a list of variables provided by the host model.

• Matches these variables by their standard_name, checks for missing variables and mismatches of their
attributes (e.g., units, rank, type, kind) and processes information on optional variables. Performs automatic
unit conversions if a mismatch of units is detected between a scheme and the host model (see Section 5.2 for
details).

• Filters out unused variables for a given suite.

• Autogenerates software caps as appropriate:

– The script generates caps for the suite as a whole and physics groups as defined in the input SDFs; in
addition, the CCPP API for the build is generated.

• Populates makefiles with caps. Statements to compile the CCPP API are included as well.

8.2 Script Configuration

To connect the CCPP with a host model XYZ, a Python-based configuration file for this model must be created in
the host model’s repository. The easiest way is to copy an existing configuration file for the TEST model in sub-
directory schemes/check of the ccpp-Framework repository. The configuration in ccpp_prebuild_config.
py depends largely on (a) the directory structure of the host model itself, (b) where the ccpp-framework and
the ccpp-physics directories are located relative to the directory structure of the host model, and (c) from which
directory the ccpp_prebuild.py script is executed before/during the build process (this is referred to as basedir
in ccpp_prebuild_config_XYZ.py).

Listing 8.1 contains an example for the CCPP-SCM prebuild config. Here, it is assumed that both ccpp-framework
and ccpp-physics are located in directories ccpp/framework and ccpp/physics of the top-level directory
of the host model, and that ccpp_prebuild.py is executed from the same top-level directory.

61

CCPP Technical Documentation

Fig. 8.1: Schematic of tasks automated by the ccpp_prebuild.py script and associated inputs and outputs. The
majority of the input is controlled through the host-model dependent ccpp_prebuild_config.py , whose user-
editable variables are included as all-caps within the ccpp_prebuild_config.py bubble. Outputs are color-
coded according to their utility: purple outputs are informational only (useful for developers, but not necessary to run
the code), yellow outputs are used within the host model, blue outputs are connected to the physics, and green outputs
are used in the model build.

62 Chapter 8. Technical Aspects of the CCPP Prebuild

CCPP Technical Documentation

Host model identifier
HOST_MODEL_IDENTIFIER = "SCM"
Add all files with metadata tables on the host model side,
relative to basedir = top-level directory of host model
VARIABLE_DEFINITION_FILES = [

’scm/src/gmtb_scm_type_defs.f90’,
’scm/src/gmtb_scm_physical_constants.f90’
]

Add all physics scheme files relative to basedir
SCHEME_FILES = {
Relative path : [list of sets in which scheme may be called]
’ccpp/physics/physics/GFS_DCNV_generic.f90’ ,
’ccpp/physics/physics/sfc_sice.f’
}
Auto-generated makefile/cmakefile snippets that contain all type definitions
TYPEDEFS_MAKEFILE = 'ccpp/physics/CCPP_TYPEDEFS.mk'
TYPEDEFS_CMAKEFILE = 'ccpp/physics/CCPP_TYPEDEFS.cmake'
TYPEDEFS_SOURCEFILE = 'ccpp/physics/CCPP_TYPEDEFS.sh'
Auto-generated makefile/cmakefile snippets that contains all schemes
SCHEMES_MAKEFILE = ’ccpp/physics/CCPP_SCHEMES.mk’
SCHEMES_CMAKEFILE = ’ccpp/physics/CCPP_SCHEMES.cmake’
SCHEMES_SOURCEFILE = 'ccpp/physics/CCPP_SCHEMES.sh'
Auto-generated makefile/cmakefile snippets that contains all caps
CAPS_MAKEFILE = ’ccpp/physics/CCPP_CAPS.mk’
CAPS_CMAKEFILE = ’ccpp/physics/CCPP_CAPS.cmake’
CAPS_SOURCEFILE = 'ccpp/physics/CCPP_CAPS.sh'
Directory where to put all auto-generated physics caps
CAPS_DIR = ’ccpp/physics/physics’
Directory where the suite definition files are stored
SUITES_DIR = 'ccpp/suites'

Optional arguments - only required for schemes that use optional arguments.
ccpp_prebuild.py will throw an exception if it encounters a scheme subroutine with
→˓optional arguments if no entry is made here. Possible values are:
OPTIONAL_ARGUMENTS = {
#’subroutine_name_1’ : ’all’, #’subroutine_name_2’ : ’none’, #’subroutine_name_3’ : [
→˓’var1’, ’var2’],}
Names of Fortran include files in the host model cap (do not change);
both files will be written to the directory of each target file
Directory where to write static API to
STATIC_API_DIR = 'scm/src'
STATIC_API_SRCFILE = 'scm/src/CCPP_STATIC_API.sh'

Directory for writing HTML pages generated from metadata files
METADATA_HTML_OUTPUT_DIR = 'ccpp/physics/physics/docs'

HTML document containing the model-defined CCPP variables
HTML_VARTABLE_FILE = ’ccpp/physics/CCPP_VARIABLES.html’
LaTeX document containing the provided vs requested CCPP variables
LATEX_VARTABLE_FILE = ’ccpp/framework/doc/DevelopersGuide/CCPP_VARIABLES.tex’

Listing 8.1: CCPP prebuild config for SCM (shortened)

Although most of the variables in the ccpp_prebuild_config.py script are described by in-line comments in
the code listing above and their use is described in Figure 8.1, some clarifying comments are in order regarding the
SCHEME_FILES variable. This is a list of CCPP-compliant physics scheme entry/exit point source files. For each
item in this list, a list of physics “sets” in which the scheme may be executed is included. A physics set refers to a
collection of physics schemes that are able to be called together and executed in one software domain of a host model

8.2. Script Configuration 63

CCPP Technical Documentation

that do not share variables with schemes from another physics set. This feature was included to cater to the needs of
the UFS Weather Model, which provides a clear-cut example of this concept. In this model, part of the microphysics
scheme needed to be coupled more tightly with the dynamics, so this part of the microphysics code was put into a
physics set labeled “fast_physics” which is executed within the dycore code. The variables in this physics set are
distinct (in memory, due to a lack of a model variable registry) from variables used in the rest of the physics, which are
part of the “slow_physics” set. In the future, it may be necessary to have additional sets, e.g. for chemistry or separate
surface model components that do not share data/memory with other model components. For simpler models such as
the CCPP SCM, only one physics set (labeled “physics”) is necessary. The concept of physics sets is different from
physics “groups”, which are capable of sharing variables among their members and between groups but are used to
organize schemes into sequential, callable units.

8.3 Running ccpp_prebuild.py

Once the configuration in ccpp_prebuild_config.py is complete, the ccpp_prebuild.py script can be
run from the top level directory. For the SCM, this script must be run to reconcile data provided by the SCM with data
required by the physics schemes before compilation and to generate physics caps and makefile segments. For the UFS
Atmosphere host model, the ccpp_prebuild.py script is called automatically by the ufs-weather-model build
system when the CCPP build is requested (by running the CCPP regression tests or by passing the option CCPP=Y
and others to the compile.sh script; see the compile commands defined in the CCPP regression test configurations
for further details).

For developers adding a CCPP-compliant physics scheme, running ccpp_prebuild.py periodically is recom-
mended to check that the metadata provided with the physics schemes matches what the host model provided. For the
UFS Atmosphere, running ccpp_prebuild.py manually is identical to running it for the SCM (since the relative
paths to their respective ccpp_prebuild_config.py files are identical), except it may be necessary to add the
--suites command-line argument.

As alluded to above, the ccpp_prebuild.py script has five command line options, with the path to a host-model
specific configuration file (--config) being the only necessary input option:

-h, --help show this help message and exit
--config PATH_TO_CONFIG/config_file path to CCPP prebuild configuration file
--clean remove files created by this script, then exit
--debug enable debugging output
--suites SUITES SDF(s) to use (comma-separated, without path)

Note: If the –suites option is omitted, all suites will be compiled into the executable.

An example invocation of running the script (called from the host model’s top level directory) would be:

./ccpp/framework/scripts/ccpp_prebuild.py \
--config=./ccpp/config/ccpp_prebuild_config.py \
--suites=FV3_GFS_v15p2 \
--debug

which uses a configuration script located at the specified path. The debug option can be used for more verbose output
from the script.

The SDF(s) must be included and specified using the --suites command-line argument. Such files are included
with the SCM and ufs-weather-model repositories, and must be included with the code of any host model to use the
CCPP. An example of a build using two SDFs is:

64 Chapter 8. Technical Aspects of the CCPP Prebuild

CCPP Technical Documentation

./ccpp/framework/scripts/ccpp_prebuild.py \
--config=./ccpp/config/ccpp_prebuild_config.py \
--suites=FV3_GFS_v15p2,FV3_GFS_v16beta

If the CCPP prebuild step is successful, the last output line will be:

INFO: CCPP prebuild step completed successfully.

To remove all files created by ccpp_prebuild.py, for example as part of a host model’s make clean function-
ality, execute the same command as before, but with --clean appended:

./ccpp/framework/scripts/ccpp_prebuild.py --config=./ccpp/config/ccpp_prebuild_config.
→˓py \
--suites=FV3_GFS_v15p2,FV3_GFS_v16beta --clean

8.4 Troubleshooting

If invoking the ccpp_prebuild.py script fails, some message other than the success message will be written to
the terminal output. Specifically, the terminal output will include informational logging messages generated from the
script and any error messages written to the Python logging utility. Some common errors (minus the typical logging
output and traceback output) and solutions are described below, with non-bold font used to denote aspects of the
message that will differ depending on the problem encountered. This is not an exhaustive list of possible errors,
however. For example, in this version of the code, there is no cross-checking that the metadata information provided
corresponds to the actual Fortran code, so even though ccpp_prebuild.py may complete successfully, there may
be related compilation errors later in the build process. For further help with an undescribed error, please contact
gmtb-help@ucar.edu.

1. ERROR: Configuration file erroneous/path/to/config/file not found

• Check that the path entered for the --config command line option points to a readable configuration
file.

2. KeyError: ‘erroneous_scheme_name’ when using the --suites option

• This error indicates that a scheme within the supplied SDFs does not match any scheme names found
in the SCHEME_FILES variable of the supplied configuration file that lists scheme source files. Dou-
ble check that the scheme’s source file is included in the SCHEME_FILES list and that the scheme
name that causes the error is spelled correctly in the supplied SDFs and matches what is in the source
file (minus any *_init, *_run, *_finalize suffixes).

3. CRITICAL: Suite definition file erroneous/path/to/SDF.xml not found.

Exception: Parsing suite definition file erroneous/path/to/SDF.xml failed.

• Check that the path SUITES_DIR in the CCPP prebuild config and the names entered for the
--suites command line option are correct.

4. ERROR: Scheme file path/to/offending/scheme/source/file belongs to multiple physics
sets: set1, set2

Exception: Call to check_unique_pset_per_scheme failed.

• This error indicates that a scheme defined in the SCHEME_FILES variable of the supplied configura-
tion file belongs to more than one set. Currently, a scheme can only belong to one physics set.

5. ERROR: Group group1 contains schemes that belong to multiple physics sets:
set1,set2

Exception: Call to check_unique_pset_per_group failed.

8.4. Troubleshooting 65

mailto:gmtb-help@ucar.edu

CCPP Technical Documentation

• This error indicates that one of the groups defined in the supplied SDF(s) contains schemes that belong
to more than one physics set. Make sure that the group is defined correctly in the SDF(s) and that the
schemes within the group belong to the same physics set (only one set per scheme is allowed at this
time).

6. INFO: Parsing metadata tables for variables provided by host model . . .

IOError: [Errno 2] No such file or directory: ‘erroneous_file.f90’

• Check that the paths specified in the VARIABLE_DEFINITION_FILES of the supplied configura-
tion file are valid and contain CCPP-compliant host model snippets for insertion of metadata informa-
tion. (see example)

7. Exception: Error parsing variable entry “erroneous variable metadata table entry data” in argument table variable_metadata_table_name

• Check that the formatting of the metadata entry described in the error message is OK.

8. Exception: New entry for variable var_name in argument table variable_metadata_table_name is incompatible with existing entry:

Existing: Contents of <mkcap.Var object at 0x10299a290> (* =
mandatory for compatibility):

standard_name = var_name *
long_name =
units = various *
local_name =
type = real *
rank = (:,:,:) *
kind = kind_phys *
intent = none
optional = F
target = None
container = MODULE_X TYPE_Y

vs. new: Contents of <mkcap.Var object at 0x10299a310> (* = mandatory
for compatibility):

standard_name = var_name *
long_name =
units = frac *
local_name =
type = real *
rank = (:,:) *
kind = kind_phys *
intent = none
optional = F
target = None
container = MODULE_X TYPE_Y

• This error is associated with a variable that is defined more than once (with the same standard name)
on the host model side. Information on the offending variables is provided so that one can provide
different standard names to the different variables.

9. Exception: Scheme name differs from module name: module_name= “X” vs. scheme_name= “Y”

66 Chapter 8. Technical Aspects of the CCPP Prebuild

CCPP Technical Documentation

• Make sure that each scheme in the errored module begins with the module name and ends in either
*_init, *_run, or *_finalize.

10. Exception: Encountered closing statement "end" without descriptor (subroutine, module, ...): line X= "end " in file erroneous_file.F90

• This script expects that subroutines and modules end with descriptor and name, e.g. ‘end subroutine
subroutine_name’.

11. Exception: New entry for variable var_name in argument table of subroutine scheme_subroutine_name is incompatible with existing entry:

existing: Contents of <mkcap.Var object at 0x10299a290> (* =
mandatory for compatibility):

standard_name = var_name *
long_name =
units = various *
local_name =
type = real *
rank = (:,:,:) *
kind = kind_phys *
intent = none
optional = F
target = None
container = MODULE_X TYPE_Y

vs. new: Contents of <mkcap.Var object at 0x10299a310> (* = mandatory
for compatibility):

standard_name = var_name *
long_name =
units = frac *
local_name =
type = real *
rank = (:,:) *
kind = kind_phys *
intent = none
optional = F
target = None
container = MODULE_X TYPE_Y

• This error is associated with physics scheme variable metadata entries that have the same standard
name with different mandatory properties (either units, type, rank, or kind currently – those attributes
denoted with a *). This error is distinguished from the error described in 8 above, because the error
message mentions “in argument table of subroutine” instead of just “in argument table”.

12. ERROR: Check that all subroutines in module module_name have the same root name:
i.e. scheme_A_init, scheme_A_run, scheme_A_finalize Here is a list of
the subroutine names for scheme scheme_name: scheme_name_finalize, scheme_name_run
* All schemes must have *_init, *_run, *_finalize subroutines contained within its entry/exit
point module.

13. ERROR: Variable X requested by MODULE_Y SCHEME_Z SUBROUTINE_A not provided by the model
Exception: Call to compare_metadata failed.

• A variable requested by one or more physics schemes is not being provided by the host model. If the

8.4. Troubleshooting 67

CCPP Technical Documentation

variable exists in the host model but is not being made available for the CCPP, an entry must be added
to one of the host model variable metadata sections.

14. ERROR: error, variable X requested by MODULE_Y SCHEME_Z SUBROUTINE_A cannot be identified unambiguously. Multiple definitions in MODULE_Y TYPE_B

• A variable is defined in the host model variable metadata more than once (with the same standard
name). Remove the offending entry or provide a different standard name for one of the duplicates.

15. ERROR: incompatible entries in metadata for variable var_name:

provided: Contents of <mkcap.Var object at 0x104883210> (* =
mandatory for compatibility):

standard_name = var_name *
long_name =
units = K *
local_name =
type = real *
rank = *
kind = kind_phys *
intent = none
optional = F
target = None
container =

requested: Contents of <mkcap.Var object at 0x10488ca90> (* =
mandatory for compatibility):

standard_name = var_name *
long_name =
units = none *
local_name =
type = real *
rank = *
kind = kind_phys *
intent = in
optional = F
target = None
container =

16. Exception: Call to compare_metadata failed.

• This error indicates a mismatch between the attributes of a variable provided by the host model and
what is requested by the physics. Specifically, the units, type, rank, or kind don’t match for a given
variable standard name. Double-check that the attributes for the provided and requested mismatched
variable are accurate. If after checking the attributes are indeed mismatched, reconcile as appropriate
(by adopting the correct variable attributes either on the host or physics side).

Note: One error that the ccpp_prebuild.py script will not catch is if a physics scheme lists a variable in its
actual (Fortran) argument list without a corresponding entry in the subroutine’s variable metadata. This will lead to a
compilation error when the autogenerated scheme cap is compiled:

Error: Missing actual argument for argument 'X' at (1)

68 Chapter 8. Technical Aspects of the CCPP Prebuild

CHAPTER

NINE

TIPS FOR ADDING A NEW SCHEME

This chapter contains a brief description on how to add a new scheme to the CCPP-Physics pool.

• Identify the variables required for the new scheme and check if they are already available for use in the CCPP by
checking the metadata information in GFS_typedefs.meta or by perusing file ccpp-framework/doc/
DevelopersGuide/CCPP_VARIABLES_{FV3,SCM}.pdf generated by ccpp_prebuild.py.

– If the variables are already available, they can be invoked in the scheme’s metadata file and
one can skip the rest of this subsection. If the variable required is not available, consider if it
can be calculated from the existing variables in the CCPP. If so, an interstitial scheme (such as
scheme_pre; see more in Chapter 2) can be created to calculate the variable. However, the
variable must be defined but not initialized in the host model as the memory for this variable
must be allocated on the host model side. Instructions for how to add variables to the host model
side is described in Chapter 6.

Note: The CCPP framework is capable of performing automatic unit conversions between
variables provided by the host model and variables required by the new scheme. See Section
5.2 for details.

– If new namelist variables need to be added, the GFS_control_type DDT should be used.
In this case, it is also important to modify the namelist file input.nml to include the new
variable.

– It is important to note that not all data types are persistent in memory. Most variables in the
interstitial data type are reset (to zero or other initial values) at the beginning of a physics group
and do not persist from one set to another or from one group to another. The diagnostic data type
is periodically reset because it is used to accumulate variables for given time intervals. However,
there is a small subset of interstitial variables that are set at creation time and are not reset; these
are typically dimensions used in other interstitial variables.

Note: If the value of a variable must be remembered from one call to the next, it should
not be in the interstitial or diagnostic data types.

– If information from the previous timestep is needed, it is important to identify if the host model
readily provides this information. For example, in the Model for Prediction Across Scales
(MPAS), variables containing the values of several quantities in the preceding timesteps are
available. When that is not the case, as in the UFS Atmosphere, interstitial schemes are needed
to compute these variables. As an example, the reader is referred to the GF convective scheme,
which makes use of interstitials to obtain the previous timestep information.

• Examine scheme-specific and suite interstitials to see what needs to be replaced/changed; then check existing
scheme interstitial and determine what needs to replicated. Identify if your new scheme requires additional

69

CCPP Technical Documentation

interstitial code that must be run before or after the scheme and that cannot be part of the scheme itself, for
example because of dependencies on other schemes and/or the order the scheme is run in the SDF.

• Follow the guidelines outlined in Chapter 2 to make your scheme CCPP-compliant. Make sure to use an upper-
case suffix .F90 to enable C preprocessing.

• Locate the CCPP prebuild configuration files for the target host model, for example:

– ufs-weather-model/FV3/ccpp/config/ccpp_prebuild_config.py for the UFS Atmo-
sphere

– gmtb-scm/ccpp/config/ccpp_prebuild_config.py for the SCM

• Add the new scheme to the Python dictionary in ccpp_prebuild_config.py using the same path as the
existing schemes:

SCHEME_FILES = [...
’../some_relative_path/existing_scheme.F90’,
’../some_relative_path/new_scheme.F90’,
...]

• If the new scheme uses optional arguments, add information on which ones to use further down in the configu-
ration file. See existing entries and documentation in the configuration file for the possible options:

OPTIONAL_ARGUMENTS = {
’SCHEME_NAME’ : {
’SCHEME_NAME_run’ : [
list of all optional arguments in use for this
model, by standard_name],
instead of list [...], can also say ’all’ or ’none’
},

}

• Place new scheme in the same location as existing schemes in the CCPP directory structure, e.g., ../
some_relative_path/new_scheme.F90.

• Edit the SDF and add the new scheme at the place it should be run. SDFs are located in

– ufs-weather-model/FV3/ccpp/suites for the UFS Atmosphere

– gmtb-scm/ccpp/suites for the SCM

• Before running, check for consistency between the namelist and the SDF. There is no default consistency check
between the SDF and the namelist unless the developer adds one. Errors may result in segmentation faults in
running something you did not intend to run if the arrays are not allocated.

• Test and debug the new scheme:

– Typical problems include segment faults related to variables and array allocation.

– Make sure SDF and namelist are compatible. Inconsistencies may result in segmentation faults because
arrays are not allocated or in unintended scheme(s) being executed.

– A scheme called GFS_debug (GFS_debug.F90) may be added to the SDF where needed to print state
variables and interstitial variables. If needed, edit the scheme beforehand to add new variables that need
to be printed.

– Check prebuild script for success/failure and associated messages.

– Compile code in DEBUG mode, run through debugger if necessary (gdb, Allinea DDT, totalview, . . .).

– Use memory check utilities such as valgrind.

70 Chapter 9. Tips for Adding a New Scheme

CCPP Technical Documentation

– Double-check the metadata file associated with your scheme to make sure that all information, including
standard names and units, correspond to the correct local variables.

• Done. Note that no further modifications of the build system are required, since the CCPP-Framework will
autogenerate the necessary makefiles that allow the host model to compile the scheme.

71

CCPP Technical Documentation

72 Chapter 9. Tips for Adding a New Scheme

CHAPTER

TEN

PARAMETERIZATION-SPECIFIC OUTPUT

10.1 Overview

When used with UFS and the SCM, the CCPP offers the capability of outputting tendencies of temperature, zonal wind,
meridional wind, ozone, and specific humidity produced by the parameterizations of selected suites. This capability is
useful for understanding the behavior of the individual parameterizations in terms of magnitude and spatial distribution
of tendencies, which can help model developers debug, refine, and tune their schemes.

The CCPP also enables outputting two-dimensional (2D) or three-dimensional (3D) arbitrary diagnostics from the
parameterizations. This capability is targeted to model developers who may benefit from analyzing intermediate
quantities computed in one or more parameterizations. One example of desirable diagnostic is tendencies from sub-
processes within a parameterization, such as the tendencies from condensation, evaporation, sublimation, etc. from a
microphysics parameterization. The output is done using CCPP-provided 2D- and 3D arrays, and the developer can
fill positions 1, 2, .., N of the array. Important aspects of the implementation are that memory is only allocated for the
necessary positions of the array and that all diagnostics are output on physics model levels. An extension to enable
output on radiation levels may be considered in future implementations.

These capabilities have been tested and are expected to work with the following suites:

• UFS: GFSv15p2 and GFSv16beta suites

• SCM: GFSv15p2, GFSv16beta, and GSD_v1 suites

10.2 Tendencies

This section describes the tendencies available, how to set the model to prepare them and how to output them. It also
contains a list of frequently-asked questions in Section 10.2.4.

10.2.1 Available Tendencies

At this time, it is possible to output 40 different tendencies. Not all schemes produce all tendencies. For example, the
orographic and convective gravity wave drag (GWD) schemes produce tendencies of temperature and momentum, but
not of specific humidity and ozone. Similarly, only the planetary boundary layer (PBL), deep and shallow convection,
and microphysics schemes produce specific humidity tendencies. A complete list of the tendencies that can be output
is shown in Table 10.1.

In addition to the tendencies from specific schemes, the output includes tendencies from all physics schemes (“All”
in Table 10.1) and from all non-physics processes (“None” in Table 10.1). Examples of non-physical processes are
dynamical core processes such as advection and nudging toward climatological fields.

In the supported suites, there are two types of schemes that produce ozone tendencies: PBL and ozone photochemistry.
The total tendency produced by the ozone photochemistry scheme (NRL 2015 scheme) is subdivided by subprocesses:

73

CCPP Technical Documentation

production and loss (combined as a single subprocess), quantity of ozone present in the column above a grid cell,
influences from temperature, and influences from mixing ratio. For more information about the NRL 2015 ozone
photochemistry scheme, consult the CCPP Scientific Documentation here.

Table 10.1: Complete list of available tendencies
Tendency Associated Namelist Variables From CCPP scheme Array Units
Temperature ldiag3d Long-wave radiation dt3dt_lw K s-1

Short-wave radiation dt3dt_sw K s-1

PBL dt3dt_pbl K s-1

Deep convection dt3dt_deepcnv K s-1

Shallow convection dt3dt_shalcnv K s-1

Microphysics dt3dt_mp K s-1

Orographic GWD dt3dt_orogwd K s-1

Rayleigh damping dt3dt_rdamp K s-1

Convective GWD dt3dt_cnvgwd K s-1

All dt3dt_phys K s-1

None dt3dt_nophys K s-1

Meridional Wind ldiag3d PBL dv3dt_pbl m s-2

Deep convection dv3dt_deepcnv m s-2

Shallow convection dv3dt_shalcnv m s-2

Microphysics dv3dt_mp m s-2

Orographic GW dv3dt_orogwd m s-2

Rayleigh damping dv3dt_rdamp m s-2

Convective GW dv3dt_cnvgmw m s-2

All dv3dt_phys m s-2

None dv3dt_nophys n s-2

Specific humidity ldiag3d, qdiag3d PBL dq3dt_pbl kg kg-1 s-1

Deep convection dq3dt_deepcnv kg kg-1 s-1

Shallow convection dq3dt_shalcnv kg kg-1 s-1

Microphysics dq3dt_mp kg kg-1 s-1

All dq3dt_phys kg kg-1 s-1

None dq3dt_nophys kg kg-1 s-1

Ozone ldiag3d, qdiag3d PBL dq3dt_o3pbl kg kg-1 s-1

Ozone: Production and loss dq3dt_o3prodloss kg kg-1 s-1

Ozone: Mixing dq3dt_o3mix kg kg-1 s-1

Ozone: Temperature dq3dt_o3temp kg kg-1 s-1

Ozone: Column dq3dt_o3column kg kg-1 s-1

All dq3dt_o3phys kg kg-1 s-1

None dq3dt_o3nophys kg kg-1 s-1

10.2.2 Activating Tendencies

For performance reasons, the preparation of tendencies for output is off by default in the UFS and can be turned on via
a set of namelist options. Since the SCM is not operational and has a relatively tiny memory footprint, these tendencies
are turned on by default in the SCM.

There are two namelist variables associated with this capability: ldiag3d and qdiag3d. To prepare the tendencies
of temperature and momentum, it is necessary to set ldiag3d to true in the &gfs_physics_nml portion of the
namelist file input.nml. To prepare the tendencies of temperature, momentum, specific humidity and ozone, it
is necessary to set both ldiag3d and qdiag3d to true in the &gfs_physics_nml portion of the namelist file
input.nml. The capability to prepare only the tendencies of specific humidity and ozone is not supported. Recall

74 Chapter 10. Parameterization-specific Output

https://dtcenter.ucar.edu/GMTB/v4.0/sci_doc/GFS_OZPHYS.html

CCPP Technical Documentation

that these options must be changed from their defaults for the UFS to activate this functionality, but they are already
set by default for the SCM.

Note that there is a third namelist variable, lssav, associated with the output of parameterization-specific informa-
tion. The value of lssav is overwritten to true in the code, so the value used in the namelist is irrelevant.

While the tendencies output by the SCM are instantaneous, the tendencies output by the UFS are averaged over the
number of hours specified by the user in variable fhzero in the &gfs_physics_nml portion of the namelist file
input.nml. Variable fhzero must be an integer (it cannot be zero).

10.2.3 Outputting Tendencies

UFS

When ldiag3d and qdiag3d are set to true, the tendencies described in Table 10.1 are prepared for output. Finer
control over which variables will actually be output is available through the diag table. The user must edit the diag
table and enter new lines at the end with the variables desired in the output. For example, adding the line below results
in the output of the temperature tendencies due to long wave radiation:

"gfs_phys", "dt3dt_lw", "dt3dt_lw", "fv3_history", "all", .false.
→˓, "none", 2

Note that some host models, such as the UFS, have a limit of how many fields can be output in a run. When
outputting all tendencies, this limit may have to be increased. In the UFS, this limit is determined by variable
max_output_fields in namelist section &diag_manager_nml in file input.nml.

Further documentation of the diag_table file can be found in the UFS Weather Model User’s Guide here.

After running, the requested arrays will be present in the output files.

SCM

The default behavior of the SCM is to output instantaneous values of all variables in Table 10.1. Tendencies are com-
puted in file gmtb_scm_output.F90 in the subroutines output_init and output_append. If the values of ldiag3d
or qdiag3d are set to false, the variables are still written to output but are given missing values.

10.2.4 FAQ

What is the meaning of error message max_output_fields was exceeded?

If the limit to the number of output fields is exceeded, the job may fail with the following message:

FATAL from PE 24: diag_util_mod::init_output_field: max_output_fields =
→˓300 exceeded. Increase via diag_manager_nml

In this case, increase max_output_fields in input.nml:

&diag_manager_nml
prepend_date = .F.
max_output_fields = 600

10.2. Tendencies 75

https://ufs-weather-model.readthedocs.io/en/latest/InputsOutputs.html#diag-table-file

CCPP Technical Documentation

10.2.5 Why did I run out of memory when outputting tendencies?

Trying to output all tendencies may cause memory problems. Choose your output variables carefully!

10.2.6 Why did I get a runtime logic error when outputting tendencies?

Setting ldiag3d=F and qdiag3d=T will result in an error message:

Logic error in GFS_typedefs.F90: qdiag3d requires ldiag3d

If you want to output specific humidity and/or ozone tendencies, you must set both ldiag3d and qdiag3d to T.

10.3 Output of Auxiliary Arrays from CCPP

The output of diagnostics from one or more parameterizations involves changes to the namelist and code changes
in the parameterization(s) (to load the desirable information onto the CCPP-provided arrays and to add them to the
subroutine arguments) and in the parameterization metadata descriptor file(s) (to provide metadata on the new sub-
routine arguments). In the UFS, the namelist is used to control the temporal averaging period. These code changes
are intended to be used by scientists during the development process and are not intended to be incorporated into the
master code. Therefore, developers must remove any code related to these additional diagnostics before submitting a
pull request to the ccpp-physics repository.

The auxiliary diagnostics from CCPP are output in arrays:

• aux2d - auxiliary 2D array for outputting diagnostics

• aux3d - auxiliary 3D array for outputting diagnostics

and dimensioned by:

• naux2d - number of 2D auxiliary arrays to output for diagnostics

• naux3d - number of 3D auxiliary arrays to output diagnostics

At runtime, these arrays will be written to the output files. Note that auxiliary arrays can be output from more than
one parameterization in a given run.

The UFS and SCM already contain code to declare and initialize the arrays:

• dimensions are declared and initialized in GFS_typedefs.F90

• metadata for these arrays and dimensions are defined in GFS_typedefs.meta

• arrays are populated in GFS_diagnostics.F90 (UFS) or gmtb_scm_output.F90 (SCM)

The remainder of this section describes changes the developer needs to make in the physics code and in the host model
control files to enable the capability. An example (Section 10.3.2) and FAQ (Section 10.3.2) are also provided.

76 Chapter 10. Parameterization-specific Output

CCPP Technical Documentation

10.3.1 Enabling the capability

Physics-side changes

In order to output auxiliary arrays, developers need to change at least the following two files within the physics (see
also example in Section 10.3.2):

• A CCPP entrypoint scheme

– Add array(s) and its/their dimension(s) to the list of subroutine arguments

– Declare array(s) with appropriate intent and dimension(s). Note that array(s) do not need to be allo-
cated by the developer. This is done automatically in GFS_typedefs.F90.

– Populate array(s) with desirable diagnostic for output

• The file with metadata for modified scheme(s)

– Add entries for the array(s) and its/their dimension(s) and provide metadata

Host-side changes

UFS

For the UFS, developers have to change the following two files on the host side (also see example provided in Section
10.3.2)

• Namelist file input.nml

– Specify how many 2D and 3D arrays will be output using variables naux2d and naux3d in section
&gfs_physics_nml, respectively. The maximum allowed number of arrays to output is 20 2D
and 20 3D arrays.

– Specify whether the output should be for instantaneous or time-averaged quantities using vari-
ables aux2d_time_avg and aux_3d_time_avg. These arrays are dimensioned naux2d and
naux3d, respectively, and, if not specified in the namelist, take the default value F.

– Specify the period of averaging for the arrays using variable fhzero (in hours).

• File diag_table

– Enable output of the arrays at runtime.

– 2D and 3D arrays are written to the output files.

SCM

Typically, in a 3D model, 2D arrays represent variables with two horizontal dimensions, e.g. x and y, whereas 3D
arrays represent variables with all three spatial dimensions, e.g. x, y, and z. For the SCM, these arrays are implicitly
1D and 2D, respectively, where the “y” dimension is 1 and the “x” dimension represents the number of independent
columns (typically also 1). For continuity with the UFS Atmosphere, the naming convention 2D and 3D are retained,
however. With this understanding, the namelist files can be modified as in the UFS:

• Namelist file input.nml

– Specify how many 2D and 3D arrays will be output using variables naux2d and naux3d in section
&gfs_physics_nml, respectively. The maximum allowed number of arrays to output is 20 2D
and 20 3D arrays.

10.3. Output of Auxiliary Arrays from CCPP 77

CCPP Technical Documentation

– Unlike the UFS, only instantaneous values are output. Time-averaging can be done through post-
processing the output. Therefore, the values of aux2d_time_avg and aux_3d_time_avg
should not be changed from their default false values. As such, the namelist variable fhzero has no
effect in the SCM.

10.3.2 Recompiling and Examples

The developer must recompile the code after making the source code changes to the CCPP scheme(s) and associated
metadata files. Changes in the namelist and diag table can be made after compilation. At compile and runtime, the
developer must pick suites that use the scheme from which output is desired.

An example for how to output auxiliary arrays is provided in the rest of this section. The lines that start with “+”
represent lines that were added by the developer to output the diagnostic arrays. In this example, the developer
modified the Grell-Freitas (GF) cumulus scheme to output two 2D arrays and one 3D array. The 2D arrays are
aux_2d (:,1) and aux_2d(:,2); the 3D array is aux_3d(:,:,1). The 2D array aux2d(:,1) will be
output with an averaging in time in the UFS, while the aux2d(:,2) and aux3d arrays will not be averaged.

In this example, the arrays are populated with bogus information just to demonstrate the capability. In reality, a
developer would populate the array with the actual quantity for which output is desirable.

diff --git a/physics/cu_gf_driver.F90 b/physics/cu_gf_driver.F90
index 927b452..aed7348 100644
--- a/physics/cu_gf_driver.F90
+++ b/physics/cu_gf_driver.F90
@@ -76,7 +76,8 @@ contains

flag_for_scnv_generic_tend,flag_for_dcnv_generic_tend, &
du3dt_SCNV,dv3dt_SCNV,dt3dt_SCNV,dq3dt_SCNV, &
du3dt_DCNV,dv3dt_DCNV,dt3dt_DCNV,dq3dt_DCNV, &

- ldiag3d,qdiag3d,qci_conv,errmsg,errflg)
+ ldiag3d,qdiag3d,qci_conv,errmsg,errflg, &
+ naux2d,naux3d,aux2d,aux3d)
!---

implicit none
integer, parameter :: maxiens=1

@@ -137,6 +138,11 @@ contains
integer, intent(in) :: imfshalcnv
character(len=*), intent(out) :: errmsg
integer, intent(out) :: errflg

+
+ integer, intent(in) :: naux2d,naux3d
+ real(kind_phys), intent(inout) :: aux2d(:,:)
+ real(kind_phys), intent(inout) :: aux3d(:,:,:)
+
! define locally for now.

integer, dimension(im),intent(inout) :: cactiv
integer, dimension(im) :: k22_shallow,kbcon_shallow,ktop_shallow

@@ -199,6 +205,11 @@ contains
! initialize ccpp error handling variables

errmsg = ''
errflg = 0

+
+ aux2d(:,1) = aux2d(:,1) + 1
+ aux2d(:,2) = aux2d(:,2) + 2
+ aux3d(:,:,1) = aux3d(:,:,1) + 3
+
!

(continues on next page)

78 Chapter 10. Parameterization-specific Output

CCPP Technical Documentation

(continued from previous page)

! Scale specific humidity to dry mixing ratio
!

The cu_gf_driver.meta file was modified accordingly:

diff --git a/physics/cu_gf_driver.meta b/physics/cu_gf_driver.meta
index 99e6ca6..a738721 100644
--- a/physics/cu_gf_driver.meta
+++ b/physics/cu_gf_driver.meta
@@ -476,3 +476,29 @@

type = integer
intent = out
optional = F

+[naux2d]
+ standard_name = number_of_2d_auxiliary_arrays
+ long_name = number of 2d auxiliary arrays to output (for debugging)
+ units = count
+ dimensions = ()
+ type = integer
+[naux3d]
+ standard_name = number_of_3d_auxiliary_arrays
+ long_name = number of 3d auxiliary arrays to output (for debugging)
+ units = count
+ dimensions = ()
+ type = integer
+[aux2d]
+ standard_name = auxiliary_2d_arrays
+ long_name = auxiliary 2d arrays to output (for debugging)
+ units = none
+ dimensions = (horizontal_dimension,number_of_3d_auxiliary_arrays)
+ type = real
+ kind = kind_phys
+[aux3d]
+ standard_name = auxiliary_3d_arrays
+ long_name = auxiliary 3d arrays to output (for debugging)
+ units = none
+ dimensions = (horizontal_dimension,vertical_dimension,number_of_3d_auxiliary_
→˓arrays)
+ type = real
+ kind = kind_phys

The following lines were added to the &gfs_physics_nml section of the namelist file input.nml:

naux2d = 2
naux3d = 1
aux2d_time_avg = .true., .false.

Recall that for the SCM, aux2d_time_avg should not be set to true in the namelist.

Lastly, the following lines were added to the diag_table for UFS:

Auxiliary output
"gfs_phys", "aux2d_01", "aux2d_01", "fv3_history2d", "all", .false.,
→˓"none", 2
"gfs_phys", "aux2d_02", "aux2d_02", "fv3_history2d", "all", .false.,
→˓"none", 2
"gfs_phys", "aux3d_01", "aux3d_01", "fv3_history", "all", .false.,
→˓"none", (continues on next page)

10.3. Output of Auxiliary Arrays from CCPP 79

CCPP Technical Documentation

(continued from previous page)

FAQ

How do I enable the output of diagnostic arrays from multiple parameterizations in a single run?

Suppose you want to output two 2D arrays from schemeA and two 2D arrays from schemeB. You should set
the namelist to naux2d=4 and naux3d=0. In the code for schemeA, you should populate aux2d(:,1) and
aux2d(:,2), while in the code for scheme B you should populate aux2d(:,3) and aux2d(:,4).

80 Chapter 10. Parameterization-specific Output

CHAPTER

ELEVEN

DEBUGGING WITH CCPP

11.1 Introduction

In order to debug code efficiently with CCPP, it is important to remember the conceptual differences between tradi-
tional, physics-driver based approaches and the ones with CCPP.

Traditional, physics-driver based approaches rely on hand-written physics drivers that connect the different physical
parameterizations together and often contain a large amount of “glue code” required between the parameterizations.
As such, the physics drivers usually have access to all variables that are used by the physical parameterizations, while
individual parameterizations only have access to the variables that are passed in. Debugging either happens on the
level of the physics driver or inside physical parameterizations. In both cases, print statements are inserted in one
or more places (e.g. in the driver before/after parameterizations to debug). In the CCPP, there are no hand-written
physics drivers. Instead, the physical parameterizations are glued together by a SDF that lists the primary physical
parameterizations and so-called interstitial parameterizations (containing the glue code, broken up into logical units)
in the order of execution.

11.2 Two categories of debugging with CCPP

• Debugging inside physical parameterizations Debugging the actual physical parameterizations is identical in
CCPP and in physics-driver based models. The parameterizations have access to the same data and debug
print statements can be added in exactly the same way.

• Debugging on a suite level Debugging on a suite level, i.e. outside physical parameterizations, corresponds to
debugging on the physics-driver level in traditional, physics-driver based models. In the CCPP, this can
be achieved by using dedicated CCPP-compliant debugging schemes, which have access to all the data by
requesting them via the metadata files. These schemes can then be called in any place in a SDF, except the
fast_physics and time_vary group, to produce the desired debugging output. The advantage of
this approach is that debugging schemes can be moved from one place to another or duplicated by simply
moving/copying a single line in the SDF before recompiling the code. The disadvantage is that different
debugging schemes may be needed, depending on the host model and their data structures. For example,
the UFS models use blocked data structures, which - at present - requires different debugging schemes for
the time_vary group in the SDF. The blocked data structures are commonly known as “GFS types”, are
defined in GFS_typedefs.F90 and exposed to the CCPP in GFS_typedefs.meta. The rationale
for this storage model is a better cache reuse by breaking up contiguous horizontal grid columns into N
blocks with a predefined block size, and allocating each of the GFS types N times. For example, the
3-dimensional air temperature is stored as

GFS_data(nb)%Statein%tgrs(1:IM,1:LM) with blocks nb=1,...,N

81

CCPP Technical Documentation

Further, the UFS models run a subset of physics inside the dynamical core (“fast physics”), for which
the host model data is stored inside the dynamical core and cannot be shared with the traditional
(“slow”) physics. As such, different debugging schemes are required for the fast_physics group.

11.3 CCPP-compliant debugging schemes for the UFS

For the UFS models, dedicated debugging schemes have been created by the CCPP developers. These schemes can be
found in FV3/ccpp/physics/physics/GFS_debug.F90. Developers can use the schemes as-is or customize
and add to them as needed. Also, several customization options are documented at the top of the file. These mainly
deal with the amount/type of data/information output from arrays, and users can switch between them by turning on
or off the corresponding preprocessor directives inside GFS_debug.F90, followed by recompiling.

11.3.1 Descriptions of the CCPP-compliant debugging schemes for the UFS

• GFS_diagtoscreen This scheme loops over all blocks for all GFS types that are persistent from one time
step to the next (except GFS_control) and prints data for almost all constituents. The call signature and
rough outline for this scheme is:

subroutine GFS_diagtoscreen_run (Model, Statein, Stateout, Sfcprop,
→˓Coupling, &

Grid, Tbd, Cldprop, Radtend, Diag,
→˓Interstitial, &

nthreads, blkno, errmsg, errflg)
! Model / Control - only timestep information for now
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d,
→˓'Model%kdt', Model%kdt)
! Sfcprop
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d,
→˓'Sfcprop%slmsk', Sfcprop%slmsk)
...
! Radtend
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d,
→˓'Radtend%sfcfsw%upfxc', Radtend%sfcfsw(:)%upfxc)
...
!Tbd
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d, 'Tbd
→˓%icsdsw', Tbd%icsdsw)
...
! Diag
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d, 'Diag
→˓%srunoff', Diag%srunoff)
...
! Statein
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d,
→˓'Statein%phii', Statein%phii)
! Stateout
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d,
→˓'Stateout%gu0', Stateout%gu0)
...
! Coupling
call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d,
→˓'Coupling%nirbmdi', Coupling%nirbmdi)
...
! Grid

(continues on next page)

82 Chapter 11. Debugging with CCPP

CCPP Technical Documentation

(continued from previous page)

call print_var(mpirank, omprank, blkno, Grid%xlat_d, Grid%xlon_d, 'Grid
→˓%xlon', Grid%xlon)
...
end subroutine GFS_diagtoscreen_run

All output to stdout/stderr from this routine is prefixed with ‘XXX: ‘ so that it can be easily
removed from the log files using “grep -ve ‘XXX: ‘ . . . ” if needed.

• GFS_interstitialtoscreen This scheme is identical to GFS_diagtoscreen, except that it
prints data for all constituents of the GFS_interstitial derived data type only. As for
GFS_diagtoscreen, the amount of information printed to screen can be customized using prepro-
cessor statements, and all output to stdout/stderr from this routine is prefixed with ‘XXX: ‘ so that
it can be easily removed from the log files using “grep -ve ‘XXX: ‘ . . . ” if needed.

• GFS_abort This scheme is indispensable to terminate a model run at some point in the call to the physics to
avoid time out. It can be customized to meet the developer’s requirements.

subroutine GFS_abort_run (Model, blkno, errmsg, errflg)
use machine, only: kind_phys
use GFS_typedefs, only: GFS_control_type
implicit none

!--- interface variables
type(GFS_control_type), intent(in) :: Model
integer, intent(in) :: blkno
character(len=*), intent(out) :: errmsg
integer, intent(out) :: errflg
! Initialize CCPP error handling variables
errmsg = ''
errflg = 0
if (Model%kdt==1 .and. blkno==size(Model%blksz)) then

if (Model%me==Model%master) write(0,*) "GFS_abort_run: ABORTING MODEL"
call sleep(10)
stop

end if
end subroutine GFS_abort_run

• GFS_checkland This routine is an example of a user-provided debugging scheme that is useful for solving
issues with the fractional grid with the Rapid Update Cycle Land Surface Model (RUC LSM). All output
to stdout/stderr from this routine is prefixed with ‘YYY: ‘ (instead of ‘XXX:’), which can be easily
removed from the log files using “grep -ve ‘YYY: ‘ . . . ” if needed.

subroutine GFS_checkland_run (me, master, blkno, im, kdt, iter, flag_iter,
→˓flag_guess, &

flag_init, flag_restart, frac_grid, isot,
→˓ivegsrc, stype, vtype, slope, &

soiltyp, vegtype, slopetyp, dry, icy, wet, lake,
→˓ocean, &

oceanfrac, landfrac, lakefrac, slmsk, islmsk,
→˓errmsg, errflg)
...
do i=1,im
!if (vegtype(i)==15) then

write(0,'(a,2i5,1x,1x,l)') 'YYY: i, blk, flag_iter(i) :', i, blkno,
→˓flag_iter(i)

write(0,'(a,2i5,1x,1x,l)') 'YYY: i, blk, flag_guess(i) :', i, blkno,
→˓flag_guess(i)

(continues on next page)

11.3. CCPP-compliant debugging schemes for the UFS 83

CCPP Technical Documentation

(continued from previous page)

write(0,'(a,2i5,1x,e16.7)')'YYY: i, blk, stype(i) :', i, blkno,
→˓stype(i)

write(0,'(a,2i5,1x,e16.7)')'YYY: i, blk, vtype(i) :', i, blkno,
→˓vtype(i)

write(0,'(a,2i5,1x,e16.7)')'YYY: i, blk, slope(i) :', i, blkno,
→˓slope(i)

write(0,'(a,2i5,1x,i5)') 'YYY: i, blk, soiltyp(i) :', i, blkno,
→˓soiltyp(i)

write(0,'(a,2i5,1x,i5)') 'YYY: i, blk, vegtype(i) :', i, blkno,
→˓vegtype(i)

write(0,'(a,2i5,1x,i5)') 'YYY: i, blk, slopetyp(i) :', i, blkno,
→˓slopetyp(i)

write(0,'(a,2i5,1x,1x,l)') 'YYY: i, blk, dry(i) :', i, blkno,
→˓dry(i)

write(0,'(a,2i5,1x,1x,l)') 'YYY: i, blk, icy(i) :', i, blkno,
→˓icy(i)

write(0,'(a,2i5,1x,1x,l)') 'YYY: i, blk, wet(i) :', i, blkno,
→˓wet(i)

write(0,'(a,2i5,1x,1x,l)') 'YYY: i, blk, lake(i) :', i, blkno,
→˓lake(i)

write(0,'(a,2i5,1x,1x,l)') 'YYY: i, blk, ocean(i) :', i, blkno,
→˓ocean(i)

write(0,'(a,2i5,1x,e16.7)')'YYY: i, blk, oceanfrac(i) :', i, blkno,
→˓oceanfrac(i)

write(0,'(a,2i5,1x,e16.7)')'YYY: i, blk, landfrac(i) :', i, blkno,
→˓landfrac(i)

write(0,'(a,2i5,1x,e16.7)')'YYY: i, blk, lakefrac(i) :', i, blkno,
→˓lakefrac(i)

write(0,'(a,2i5,1x,e16.7)')'YYY: i, blk, slmsk(i) :', i, blkno,
→˓slmsk(i)

write(0,'(a,2i5,1x,i5)') 'YYY: i, blk, islmsk(i) :', i, blkno,
→˓islmsk(i)

!end if
end do

11.3.2 How to use these debugging schemes for the UFS

Below is an example for an SDF that prints debugging output from the standard/persistent GFS types and the interstitial
type in two places in the radiation group before aborting. Remember that the model loops through each group N block
number of times (with potentially M different threads), hence the need to configure GFS_abort_run correctly (in
the above example, it aborts for the last block, which is either the last loop or in the last group of the threaded loop).

<?xml version="1.0" encoding="UTF-8"?>

<suite name="FV3_GFS_v15p2" lib="ccppphys" ver="4">
<!-- <init></init> -->
<group name="fast_physics">
...

</group>
<group name="time_vary">
...

</group>
<group name="radiation">
<subcycle loop="1">

<scheme>GFS_suite_interstitial_rad_reset</scheme>
(continues on next page)

84 Chapter 11. Debugging with CCPP

CCPP Technical Documentation

(continued from previous page)

<scheme>GFS_diagtoscreen</scheme>
<scheme>GFS_interstitialtoscreen</scheme>
<scheme>GFS_rrtmg_pre</scheme>
<scheme>rrtmg_sw_pre</scheme>
<scheme>rrtmg_sw</scheme>
<scheme>rrtmg_sw_post</scheme>
<scheme>rrtmg_lw_pre</scheme>
<scheme>rrtmg_lw</scheme>
<scheme>rrtmg_lw_post</scheme>
<scheme>GFS_rrtmg_post</scheme>
<scheme>GFS_diagtoscreen</scheme>
<scheme>GFS_interstitialtoscreen</scheme>
<scheme>GFS_abort</scheme>

</subcycle>
</group>
<group name="physics">
...

</group>
<group name="stochastics">
...

</group>
<!-- <finalize></finalize> -->
</suite>

Users should be aware that the additional debugging output slows down model runs. It is recommended to
reduce the forecast length (as often done for debugging purposes) or increase the walltime limit to debug effi-
ciently.

11.3.3 How to customize the debugging schemes and the output for arrays in the
UFS

At the top of GFS_debug.F90, there are customization options in the form of preprocessor directives (CPP #ifdef
etc statements) and a brief documentation. Users not familiar with preprocessor directives are referred to the available
documentation such as Using fpp Preprocessor Directives At this point, three options exist: (1) full output of every
element of each array if none of the #define preprocessor statements is used, (2) minimum, maximum, and mean value
of arrays (default for GNU compiler), and (3) minimum, maximum, and 32-bit Adler checksum of arrays (default for
Intel compiler). Note that Option (3), the Adler checksum calculation, cannot be used with gfortran (segmentation
fault, bug in malloc?).

!> \file GFS_debug.F90
!!
!! This is the place to switch between different debug outputs.
!! - The default behavior for Intel (or any compiler other than GNU)
!! is to print minimum, maximum and 32-bit Adler checksum for arrays.
!! - The default behavior for GNU is to minimum, maximum and
!! mean value of arrays, because calculating the checksum leads
!! to segmentation faults with gfortran (bug in malloc?).
!! - If none of the #define preprocessor statements is used,
!! arrays are printed in full (this is often impractical).
!! - All output to stdout/stderr from these routines are prefixed
!! with 'XXX: ' so that they can be easily removed from the log files
!! using "grep -ve 'XXX: ' ..." if needed.
!! - Only one #define statement can be active at any time (per compiler)
!!

(continues on next page)

11.3. CCPP-compliant debugging schemes for the UFS 85

https://software.intel.com/content/www/us/en/develop/documentation/fortran-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/fpp-preprocessing/using-fpp-preprocessor-directives.html

CCPP Technical Documentation

(continued from previous page)

!! Available options for debug output:
!!
!! #define PRINT_SUM: print minimum, maximum and mean value of arrays
!!
!! #define PRINT_CHKSUM: minimum, maximum and 32-bit Adler checksum for
→˓arrays
!!
#ifdef __GFORTRAN__
#define PRINT_SUM
#else
#define PRINT_CHKSUM
#endif

86 Chapter 11. Debugging with CCPP

CHAPTER

TWELVE

ACRONYMS

Abbreviation Explanation
aa Aerosol-aware
API Application Programming Interface
b4b Bit-for-bit
CCPP Common Community Physics Package
CF conventions Climate and Forecast Metadata Conventions
CPP C preprocessor
CPT Climate Process Team
CSAW Chikira-Sugiyama convection with Arakawa-Wu extension
DDT Derived Data Type
dycore Dynamical core
EDMF Eddy-Diffusivity Mass Flux
EMC Environmental Modeling Center
eps Encapsulated PostScript
ESMF The Earth System Modeling Framework
ESPC Earth System Prediction Capability
FMS Flexible Modeling System
FV3 Finite-Volume Cubed Sphere
GF Grell-Freitas convective scheme
GFDL Geophysical Fluid Dynamics Laboratory
GFS Global Forecast System
GSD Global Systems Division
HEDMF Hybrid eddy-diffusivity mass-flux
HTML Hypertext Markup Language
IPD Interoperable Physics Driver
LSM Land Surface Model
MG Morrison-Gettelman
MP Microphysics
MPAS Model for Prediction Across Scales
MPI Message Passing Interface
MYNN Mellor-Yamada-Nakanishi-Niino
NCAR National Center for Atmospheric Research
NEMS National Oceanic and Atmospheric Administration (NOAA) Environmental Modeling Sys-

tem
NEMSfv3gfs National Oceanic and Atmospheric Administration (NOAA) Environmental Modeling Sys-

tem using FV3 dynamic core and GFS physics
NGGPS Next Generation Global Prediction System
NOAA National Oceanic and Atmospheric Administration

continues on next page

87

CCPP Technical Documentation

Table 12.1 – continued from previous page
Abbreviation Explanation
NRL Naval Research Laboratory
NSST Near Sea Surface Temperature ocean scheme
NUOPC National Unified Operational Prediction Capability
OpenMP Open Multi-Processing
PBL Planetary Boundary Layer
png Portable Network Graphic
PR Pull request
PROD Compiler optimization flags for production mode
REPRO Compiler optimization flags for reproduction mode (bit-for-bit testing)
RRTMG Rapid Radiative Transfer Model for Global Circulation Models
RT Regression test
RUC Rapid Update Cycle
sa Scale-aware
SAS Simplified Arakawa-Schubert
SCM Single Column Model
SDF Suite Definition File
sfc Surface
SHUM Perturbed boundary layer specific humidity
SKEB Stochastic Kinetic Energy Backscatter
SPPT Stochastically Perturbed Physics Tendencies
TKE Turbulent Kinetic Energy
TWP-ICE Tropical Warm Pool International Cloud Experiment
UML Unified Modeling Language
UFS Unified Forecast System
VLab Virtual Laboratory
WRF Weather Research and Forecasting

88 Chapter 12. Acronyms

CHAPTER

THIRTEEN

GLOSSARY

CCPP Model agnostic, vetted, collection of codes containing atmospheric physical parameterizations and suites for
use in NWP along with a framework that connects the physics to host models

CCPP-Framework The infrastructure that connects physics schemes with a host model; also refers to a software
repository of the same name

CCPP-Physics The pool of CCPP-compliant physics schemes; also refers to a software repository of the same name

“Fast” physics Physical parameterizations that require tighter coupling with the dynamical core than “slow” physics
(due to the approximated processes within the parameterization acting on a shorter timescale) and that benefit
from a smaller time step. The distinction is useful for greater accuracy, numerical stability, or both. In the UFS
Atmosphere, a saturation adjustment is used in some suites and is called directly from the dynamical core for
tighter coupling

Group A set of physics schemes within a suite definition file (SDF) that are called together without intervening
computations from the host application

Group cap Autogenerated interface between a group of physics schemes and the host model.

Host model/application An atmospheric model that allocates memory, provides metadata for the variables passed
into and out of the physics, and controls time-stepping

Interstitial scheme A modularized piece of code to perform data preparation, diagnostics, or other “glue” functions
that allows primary schemes to work together as a suite. They can be categorized as “scheme-specific” or
“suite-level”. Scheme-specific interstitial schemes augment a specific primary scheme (to provide additional
functionality). Suite-level interstitial schemes provide additional functionality on top of a class of primary
schemes, connect two or more schemes together, or provide code for conversions, initializing sums, or applying
tendencies, for example.

Multi-suite CCPP build A CCPP build property in which a set of physics suites is specified at compile time from
which one can be chosen at runtime.

NEMS The NOAA Environmental Modeling System - a software infrastructure that supports NCEP/EMC’s forecast
products. The coupling software is based on ESMF and the NUOPC layer.

NUOPC The National Unified Operational Prediction Capability is a consortium of Navy, NOAA, and Air Force
modelers and their research partners. It aims to advance the weather modeling systems used by meteorologists,
mission planners, and decision makers. NUOPC partners are working toward a common model architecture - a
standard way of building models - in order to make it easier to collaboratively build modeling systems.

Parameterization The representation, in a dynamic model, of physical effects in terms of admittedly oversimplified
parameters, rather than realistically requiring such effects to be consequences of the dynamics of the system
(AMS Glossary)

Physics cap Generic name to refer to suite and group physics caps.

89

CCPP Technical Documentation

Physics Suite cap Autogenerated interface between an entire suite of physics schemes and the host model. It consists
of calls to autogenerated physics group caps. It may be used to call an entire suite at once or to call a specific
group within a physics suite

Primary scheme A parameterization, such as PBL, microphysics, convection, and radiation, that fits the traditionally-
accepted definition, as opposed to an interstitial scheme

PROD Compiler flags used by NCEP for operational runs of the UFS Atmosphere and by EMC for regression tests
of the code

REPRO Compiler flags used by EMC to guarantee reproducibility of the UFS Atmosphere code

Scheme A CCPP-compliant parameterization (primary scheme) or auxiliary code (interstitial scheme)

SDF Suite Definition File (SDF) is an external file containing information about the construction of a physics suite.
It describes the schemes that are called, in which order they are called, whether they are subcycled, and whether
they are assembled into groups to be called together

Set A collection of physics schemes that do not share memory (e.g. fast and slow physics)

“Slow” physics Physical parameterizations that can tolerate looser coupling with the dynamical core than “fast”
physics (due to the approximated processes within the parameterization acting on a longer timescale) and that
often use a longer time step. Such parameterizations are typically grouped and calculated together (through
a combination of process- and time-splitting) in a section of an atmospheric model that is distinct from the
dynamical core in the code organization

Standard_name Variable names based on CF conventions (http://cfconventions.org) that are uniquely identified by
the CCPP-compliant schemes and provided by a host model

Subcycling Executing a physics scheme more frequently (with a shorter timestep) than the rest of the model physics
or dynamics

Suite A collection of primary physics schemes and interstitial schemes that are known to work well together

UFS A Unified Forecast System (UFS) is a community-based, coupled comprehensive Earth system modeling sys-
tem. The UFS numerical applications span local to global domains and predictive time scales from sub-hourly
analyses to seasonal predictions. It is designed to support the Weather Enterprise and to be the source system
for NOAA’s operational numerical weather prediction applications

UFS Atmosphere The atmospheric model component of the UFS. Its fundamental parts are the dynamical core and
the physics

UFS Weather Model Global meduim-range, weather-prediction model previously known as NEMSfv3gfs or
FV3GFS used to create forecasts.

VLab Virtual Laboratory - a service and information technology framework, that enables NOAA employees and
their partners to share ideas, collaborate, engage in software development, and conduct applied research (https:
//www.nws.noaa.gov/mdl/vlab/)

.xsd file extension XML schema definition

90 Chapter 13. Glossary

http://cfconventions.org
https://www.nws.noaa.gov/mdl/vlab/
https://www.nws.noaa.gov/mdl/vlab/

INDEX

Symbols
"Fast" physics, 89
"Slow" physics, 90
.xsd file extension, 90

C
CCPP, 89
CCPP-Framework, 89
CCPP-Physics, 89

G
Group, 89
Group cap, 89

H
Host model/application, 89

I
Interstitial scheme, 89

M
Multi-suite CCPP build, 89

N
NEMS, 89
NUOPC, 89

P
Parameterization, 89
Physics cap, 89
Physics Suite cap, 90
Primary scheme, 90
PROD, 90

R
REPRO, 90

S
Scheme, 90
SDF, 90
Set, 90

Standard_name, 90
Subcycling, 90
Suite, 90

U
UFS, 90
UFS Atmosphere, 90
UFS Weather Model, 90

V
VLab, 90

91

	CCPP Overview
	How to Use this Document

	CCPP-Compliant Physics Parameterizations
	General Rules
	Metadata Table Rules
	ccpp-table-properties
	ccpp-arg-table

	Input/output Variable (argument) Rules
	Coding Rules
	Parallel Programming Rules
	Scientific Documentation Rules
	Doxygen Comments and Commands
	Doxygen Documentation Style
	Doxygen Configuration
	Including metadata information
	Using Doxygen

	CCPP Configuration and Build Options
	Constructing Suites
	Suite Definition File
	Groups
	Subcycling
	Order of Schemes

	Interstitial Schemes
	SDF Examples
	Simplest Case: Single Group and no Subcycling
	Case with Multiple Groups
	Case with Subcycling
	GFS v16beta Suite

	Suite and Group Caps
	Overview
	Automatic unit conversions

	Host Side Coding
	Variable Requirements on the Host Model Side
	Metadata for Variable in the Host Model
	Active Attribute

	CCPP Variables in the SCM and UFS Atmosphere Host Models
	CCPP API
	Data Structure to Transfer Variables between Dynamics and Physics
	Initializing and Finalizing the CCPP
	Running the Physics
	Initializing and Finalizing the Physics

	Host Caps
	SCM Host Cap
	UFS Atmosphere Host Cap

	CCPP Code Management
	Organization of the Code
	Authoritative Repositories
	Directory Structure of ccpp/framework
	Directory Structure of ccpp/physics

	GitHub Workflow (setting up development repositories)
	Creating Forks
	Checking out the Code

	Committing Changes to your Fork
	Contributing Code, Code Review Process
	Creating a PR

	Technical Aspects of the CCPP Prebuild
	Prebuild Script Function
	Script Configuration
	Running ccpp_prebuild.py
	Troubleshooting

	Tips for Adding a New Scheme
	Parameterization-specific Output
	Overview
	Tendencies
	Available Tendencies
	Activating Tendencies
	Outputting Tendencies
	FAQ
	Why did I run out of memory when outputting tendencies?
	Why did I get a runtime logic error when outputting tendencies?

	Output of Auxiliary Arrays from CCPP
	Enabling the capability
	Recompiling and Examples

	Debugging with CCPP
	Introduction
	Two categories of debugging with CCPP
	CCPP-compliant debugging schemes for the UFS
	Descriptions of the CCPP-compliant debugging schemes for the UFS
	How to use these debugging schemes for the UFS
	How to customize the debugging schemes and the output for arrays in the UFS

	Acronyms
	Glossary
	Index

